目前,隨著第三代汽車用現金高強65錳鋼板的開發,越來越多的高品質中錳鋼出現。中錳鋼內有大量亞穩奧氏體組織,在變形過程中伴隨著相變的發生,能夠提高材料的強度和塑性。但目前科研人員大多聚焦在中錳鋼成分及組織調控方面,對于中錳鋼實際應用鮮有關注。本文基于原位掃描電鏡觀察,DIC光學實驗觀察,XRD檢測分析及不同應變量樣品的透射電鏡觀察分析研究了5Mn中錳鋼單軸拉伸過程中的變形機理,結合觀組織表征、力學性能測試和仿真分析,探索中錳鋼成形性能、強韌化機理及實際生產可行性。
5Mn中錳鋼強塑積可達到30GPa.%以上,基體為鐵素體及奧氏體組織,可能存在冷軋及熱處理引入的少量板條馬氏體,其中奧氏體分為大晶粒和小晶粒兩種類型,大晶粒奧氏體穩定性低于小晶粒奧氏體。單軸拉伸過程中,屈服階段奧氏體向馬氏體轉變的轉變量較少,因此呂德斯應變僅為1%左右(遠低于同類中錳鋼),屈服結束后較多大晶粒奧氏體發生相變,20%變形后大量小晶粒奧氏體發生相變。由于奧氏體晶粒較小,因此相變產生的可動位錯數量適中,產生連續傳播的A型PLC帶。部分大晶粒奧氏體在變形過程中出現層錯,其相變過程為奧氏體—ε馬氏體—α’-馬氏體。本文通過埃里克森杯突實驗,擴孔實驗及成形極限實驗研究了5Mn中錳鋼的成形性能。65mn錳冷軋鋼板鋼擁有良好的杯突性能,在光潔區域杯突值可達到12mm以上。實驗采用激光切割,線切割及沖孔三種預制孔加工工藝研究制孔工藝對擴孔性能的影響,結果顯示線切割制孔樣擴孔性能 ,激光切割制孔樣擴孔性能為穩定,沖孔樣由于沖孔過程中局部材料存在相變及加工硬化,因此擴孔性能
將成形實驗數據與Keeler公式結合計算得到材料的成形極限圖,結果顯示Keeler公式計算所得成形極限圖與實測值較為接近,可用于5Mn鋼的成形極限計算。65錳冷軋鋼板此外,為了研究剪切工藝對中錳鋼力學性能的影響,本文分別采用0.03t、0.05t、0.067t、0.10t、0.12t(t為板料厚度)五種不同間隙進行沖裁,發現間隙為0.03t時5Mn中錳鋼邊部形貌 ,毛刺小且邊部影響區淺,力學性能也為優異。0.12t間隙樣對應毛刺 且邊部硬化為嚴重,因此力學性能差。為進一步探究剪切工藝對5Mn鋼力學性能的影響,增加激光及線切割樣進行對比。結果顯示激光切割同樣存在邊部硬化情況,但影響區很窄,對力學性能影響極小。
65mn錳冷軋鋼板·線切割對材料邊部形貌基本無影響,對應了 力學性能。后,為探究5Mn鋼的實際應用潛力,進行了汽車零件進氣端錐的試制及仿真分析。試制結果顯示,5Mn鋼可滿足零件現有制造工藝要求,9道工序后未出現開裂情況,與現用材料304不銹鋼持平。通過Autoform軟件進行仿真分析,結合成形極限分布分析,證明中錳鋼成形性能優異,總體可滿足零件生產要求。
為了減少馬氏體中錳鋼因韌塑性能不足而產生的開裂和磨損失效,本文利用淬火-配分(Q&P)工藝在馬氏體中錳鋼基體中引入一定體積分數殘余奧氏體,借助OM、SEM觀察觀組織形貌,采用TEM、EBSD、XRD等技術分析殘余奧氏體形貌65錳冷軋鋼板、分布與體積分數,使用硬度計、65錳鋼板拉伸試驗機測試鋼的強韌性能,借助磨粒磨損試驗機測試鋼的抗磨損性能。研究了不同冷卻速率對相變行為的影響,淬火-配分(Q&P)工藝對組織演變、強度及磨損性能的影響。
專業銷售 江西萍鄉16錳鋼板。
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司
將繼續秉持“追求卓越,永續經營”的經營理念,立足市場,挑戰自我,服務客戶,堅定不移地做中國的不銹鋼材料供應商。
經營宗旨:的品質和服務創造企業品牌。
經營理念:以人為本,開拓創新,持續改進,追求卓越。
質量方針:弘揚品質精神,構建完善的質量管理體系,把品質戰略貫穿于公司日常工作的各個細節中。
環境方針:遵守法規,減廢防污,持續改進,綠色環保。
公司理念:誠信經營貼心的服務誠心的交流,顧客滿意是企業永恒的追求
隨著汽車輕量化戰略的實施及汽車行業需求的變化,高強度高塑性的先進高強鋼被開發及應用。65錳鋼板尤其是以中錳鋼等鋼種為代表的第三代先進高強鋼兼顧成本及性能,在低制造成本的前提下,其強塑積能達到30 GPa-%級以上。
在開發中錳鋼等第三代先進高強鋼的過程中,亞穩奧氏體及其穩定性被認為是影響鋼材優異力學性能的關鍵因素;在應用中錳鋼等鋼種的過程中,亞穩奧氏體及其穩定性會影響回彈等成形方面的問題,因此需要深入研究。65mn錳冷軋鋼板本文以強塑積為30 GPa-%級的高強塑中錳鋼為研究對象,分析了組織中亞穩奧氏體在不同應變速率和不同變形方式下的穩定性;并以此為理論依據,探討了彎曲變形過程亞穩奧氏體發生的相變行為以及亞穩奧氏體對彎曲回彈的影響, 基于奧氏體特征建立了回彈預測模型,實現了中錳鋼回彈行為的高精度預測。本文的主要工作和結論如下:利用高速拉伸實驗及數字圖像關聯技術(Digital image correlation,DIC)研究了不同應變速率下亞穩奧氏體的穩定性。
結果表明,在應變速率為10-3s-1至5×101s-1范圍內,奧氏體穩定性隨著應變速率的增加而增加。通過EBSD和TEM觀察發現,不同應變速率下,高強塑中錳鋼觀組織的演變規律基本保持一致,即奧氏體隨著應變量的增加逐漸發生畸變,其內部產生層錯,部分奧氏體轉變成馬氏體;鐵素體內部幾何必要位錯密度隨著應變量的增加而顯著增加,并形成高密度的小角度晶界;奧氏體晶粒內的層錯隨著應變速率的增加呈現逐漸稀疏的趨勢。結合熱動力學計算及觀組織分析,65mn錳冷軋鋼板在應變速率由10-3 s-1增加至5×101s-1時,奧氏體的層錯能由9.8 mJ/m2升高至18.7mJ/m2,層錯能的升高抑制了奧氏體的轉變,增加了奧氏體穩定性;同時應變速率增加導致發生相變的臨界能量升高以及相變驅動力降低,也是奧氏體穩定性上升的原因。通過板材成形實驗及DIC技術研究了不同變形方式下亞穩奧氏體的穩定性。