65錳鋼板,65錳冷軋鋼板品質優選
更新時間:2025-01-31 12:44:53 瀏覽次數:8 公司名稱: 眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司
產品參數 | |
---|---|
產品價格 | 135 |
發貨期限 | 電議 |
供貨總量 | 電議 |
運費說明 | 電議 |
材質 | 65錳鋼板 |
規格 | 1500*4000 |
品牌 | 河鋼、敬業 |
切割方式 | 激光加工 |
狀態 | 冷軋、熱軋、淬火 |
福建廈門哪里有銷售 福建廈門16錳鋼板,不用東奔西跑,本站商家眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司,報價實在,價格便宜,廠家直銷,規格齊全,庫存充足。下面是部分產品圖片和介紹,更新信息趕緊聯系商家吧!
結果表明,65錳鋼板當變形方式由簡單剪切變為單向拉伸再變為平面應變 變為等雙拉時,奧氏體的穩定性逐漸下降。通過EBSD觀察發現,不同變形方式下,隨著應變量的增加,奧氏體逐漸發生畸變,部分奧氏體發生馬氏體相變,鐵素體內部幾何必要位錯密度增加。結合織構分析、Schmid因子及外力所做功的計算可知,變形方式由單向拉伸變為平面應變再變為等雙拉時,奧氏體Schmid因子增加,同時機械外力所做的功上升,兩種因素共同作用導致奧氏體的穩定性下降。而在簡單剪切變形時,奧氏體Schmid因子較高,而機械外力所做的功 ,機械外力產生的相變驅動力較小,導致簡單剪切變形時奧氏體的穩定性較高。以奧氏體在不同應變速率和變形方式下的穩定性為理論依據,利用彎曲回彈實驗研究了成形工藝參數對中錳鋼回彈行為的影響。
結果表明,彎曲變形后中錳鋼厚度方向上發生不均勻變形。65mn錳冷軋鋼板在增加沖壓速度的條件下,彎曲內層區域的變形程度較低,導致發生馬氏體相變的奧氏體體積分數減少及幾何必要位錯密度增加趨勢減弱,使得加工硬化能力減弱,從而中錳鋼的回彈角降低。在增加彎曲角度的條件下,彎曲內層區域的變形程度增加,使得發生馬氏體相變的奧氏體體積分數增加以及幾何必要位錯密度增加,導致加工硬化增加,從而中錳鋼的回彈角增加。當凹模跨距增加時,彎曲內層區域和外層區域的變形均降低,使得發生馬氏體相變的奧氏體體積分數及幾何必要位錯密度呈現減弱趨勢。在相同的總變形條件下,凹模跨距的增加,使得彈性變形階段所占比例增大,因而中錳鋼的回彈角增加。通過改變兩相區退火工藝和軋制方式研究了奧氏體體積分數和織構對中錳鋼彎曲回彈的影響。結果表明,奧氏體體積分數的增加,使得材料的彈性模量增加;制備不同奧氏體體積分數的兩相區退火工藝使得中錳鋼具有不同的屈服強度和加工硬化。
65mn錳冷軋鋼板彈性模量、屈服強度和加工硬化的差異共同導致回彈角的變化。在不同的奧氏體織構條件下,中錳鋼的彈性模量隨著含<111>的織構組分強度的減弱而降低;同時其加工硬化能力隨著含<1-10>和<001>的織構組分強度的增強而增加。彈性模量的降低和加工硬化能力的增加是回彈角增加的主要原因。考慮奧氏體體積分數和織構對彈性模量影響的有限元仿真模型,能夠更地預測實驗用中錳鋼的回彈行為,其預測的回彈角更接近實驗測定的回彈角。
傳統高65mn錳鋼板(Hadfield鋼)在室溫下能獲得單相奧氏體,具有優良的加工硬化能力和抗沖擊能力,因此廣泛用作沖擊載荷下的耐磨材料。然而較低的屈服強度和初始硬度,導致材料在低沖擊載荷下不能完全發揮其耐磨性就發生塑性變形,降低了使用壽命。本文設計出一種輕質超高錳鋼(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服強度、高初始硬度、良好沖擊韌性等特點,適用于低沖擊載荷下的磨損條件。通過研究時效處理后的相轉變、壓縮變形、沖擊磨損分析了實驗鋼的強化機理和磨損機理。
實驗鋼經1050℃保溫1.5h水韌處理后獲得單相奧氏體,65錳冷軋鋼板時效后奧氏體基體會彌散析出納米級別的κ’-碳化物,有助于屈服強度和初始硬度。在550℃時效2h綜合力學性能65錳鋼板佳,與僅水韌處理相比屈服強度提高107.4%,初始硬度提高28.7%,其抗拉強度為1041.7 MPa、屈服強度為1002.7 MPa、斷后伸長率為17.6%、沖擊韌性(V型缺口)為62 J/cm2和硬度為268.5 HB。隨著時效溫度升高(550℃~900℃)相轉變的順序為:κ’→納米-κ’+β-Mn→亞米-κ’+β-Mn+α→納米-κ’。其中四種類型的κ相析出涉及尺寸、形貌和分布被總結,包括晶內型:納米-κ’(<50nm),亞米-κ’(>100nm)。
晶間型:κ*(~1μm)。以及片層狀κ,存在α+κ群落中。在550℃時效下,納米-κ’能促進β-Mn沿晶界析出,不需要借助α相;而在700℃和800℃長時間時效下,由于α相的大量析出,其形成主要借助于γ→α反應。通過納米壓痕測試,獲得了不同時效溫度下基體與析出相的納米硬度。計算得到理論層錯能(SFE)為82.3 mJ/m2,由于平面滑移軟化效應,變形模式以位錯平面滑動為主,隨著變形量的增加,主要的亞結構演變順序為:平面位錯隊列→平面位錯配置(偶極子和Lomer-Cottrell鎖)→泰勒晶格→帶。65錳冷軋鋼板本研究利用壓縮變形,觀察到了高層錯能下被抑制的形變孿晶以及一種多晶結構。通過分析理論臨界孿生應力(σT),當外加應力大于σT,形變孿晶出現。多晶結構內部以位錯纏結為主,通過波狀滑移形成了位錯胞。并提出了多效協同的強化機理:1)位錯平面滑移導致滑移帶細化和帶形成,2)形變孿晶,3)多晶結構。這些形變亞結構的出現共同限制了位錯運動,促進基體內位錯密度的不均勻,從而增強了應變硬化。低沖擊載荷(0.5 J)下,時效后實驗65mn錳鋼板耐磨性更好,磨損百分比更低(0.55%~0.57%)。