近年來,中65錳鋼板因具有優異的強塑積且兼顧了經濟性與工業可行性而成為了第三代汽車用鋼中的一個研究熱點,如何進一步提高其力學性能是人們研究的重點之一。
基于此,本文在傳統中錳鋼研究的基礎上,設計了一種V合金化中錳鋼并對其進行了熱軋、冷軋、溫軋及隨后的兩相區退火處理,較為系統地研究了實驗鋼在不同軋制狀態及不同退火溫度下的觀組織和力學性能變化規律,探討了V合金化對中錳鋼強度的影響。得到的主要結果如下:本文通過研究熱軋+兩相區退火(625℃-800℃)處理的實驗鋼組織與力學性能,得出的結果表明:實驗鋼組織主要為長條狀δ-鐵素體、板條狀的α-鐵素體+殘余奧氏體(Retained austenite,RA)以及大量細小彌散的VC析出相。對于625℃和750℃的兩相區退火試樣,VC的析出強化增量分別為-347 MPa和-234 MPa;隨著退火溫度(Intercritical annealing temperature,TIA)的,65錳冷軋鋼板VC析出相尺寸增大和RA板條粗化引起了屈服強度的顯著降低。
隨著TIA的,RA含量先增加后降低,穩定性持續降低,導致實驗鋼的強塑積先增加后降低;當TIA為725℃時,可獲得高達-50GPa·%的強塑積,并且屈服強度達到890 MPa,從而具有優異的強塑性配合。通過研究冷軋+兩相區退火(650℃-800℃)處理的實驗鋼組織與力學性能,其結果表明:冷軋退火態實驗鋼的組織主要為長條狀δ-鐵素體、等軸狀α-鐵素體+RA以及大量細小彌散的VC析出相。65mn錳冷軋鋼板其中,當TIA較低時,組織中存在少量板條狀組織;隨著TIA升高,板條狀組織逐漸消失,等軸狀組織逐漸增多。此外,隨著TIA的升高,RA含量逐漸增加而RA穩定性持續降低,導致實驗鋼的強塑積先增加后降低。其中,當TIA為700℃時,獲得高達-52.6GPa·%的強塑積。通過研究溫軋以及溫軋+兩相區退火(650℃-800℃)處理的實驗鋼組織與力學性能,其結果表明:溫軋原始態及溫軋+退火態實驗鋼的組織均為δ-鐵素體、板條狀與少量等軸狀共存的α-鐵素體+RA以及大量細小彌散VC析出相。當TIA為650-750℃時,其強塑積均能保持在50 GPa·%以上,這表明溫軋處理使實驗鋼具有較寬的熱處理工藝窗口。因此,溫軋處理有可能成為一種簡化傳統中錳鋼生產應用的新方法。
圓錐破碎機是礦山行業中的一個關鍵設備65錳冷軋鋼板,其工作環境復雜且工作量巨大,因此設置耐磨襯板來保護圓錐破碎機的機體結構,作為該設備重要的消耗配件,其性能和使用壽命直接影響圓錐破碎機的工作效率和生產成本。目前我國破碎機襯板廣泛采用高錳鋼,其特點為屈服強度和初始硬度較低,若無法充分發揮加工硬化作用,高錳鋼的耐磨性難以滿足圓錐破碎機的使用需求。基于此,本文沿著提高強度和硬度、并保持一定沖擊韌性,從而提高綜合耐磨性的思路,設計了一種以貝氏體和馬氏體為主要組織的圓錐破碎機襯板用貝-馬復相耐磨鑄鋼。研究了貝-馬復相耐磨鑄鋼的相變規律,得到了 Ac1、Ac3和Ms溫度分別為762℃、843℃和281℃。
65錳鋼板材料的淬透性良好,在40℃/s~0.05℃/s的冷速范圍內均可發生馬氏體相變,在5℃/s~0.05℃/s的冷速范圍內均能夠獲得一定含量的貝氏體組織。確定了貝-馬復相耐磨鑄鋼的 熱處理工藝為900℃×2 h空冷或爐冷+回火300℃×2h,此時的力學性能為:抗拉強度1478 MPa、屈服強度1233 MPa、硬度52.1 HRC、常溫沖擊功20.6 J。分析了熱處理工藝參數對貝-馬復相耐磨鑄鋼力學性能和顯組織的影響規律,結果表明:淬火保溫溫度直接影響原始奧氏體晶粒、馬氏體板條束和板條塊的尺寸,而對馬氏體板條尺寸的影響具有遲滯性。
淬火冷卻速度影響組織中貝氏體和馬氏體的含量,在馬氏體晶界處的Mn、S、C和Si化合物降低了韌性,65mn錳冷軋鋼板在貝氏體組織中,大角度晶界和Y2O3的析出物對韌性有益。馬氏體組織具有更高密度的位錯纏結和更精細的板條組織,因此納米硬度高于貝氏體組織。通過二體銷-盤磨損實驗和三體沖擊磨料磨損實驗對比了貝-馬復相耐磨鑄鋼和Mn13Cr2的耐磨性,結果表明:貝-馬復相耐磨鑄鋼的耐磨性在銷-盤磨損和1 J、2 J、4 J沖擊磨料磨損時分別比Mn13Cr2高197%和38%、99%、246%。對貝-馬復相耐磨鑄鋼鹽霧腐蝕后再進行三體沖擊磨料磨損實驗,其耐磨性在鹽霧腐蝕1 h、2 h、4 h、8 h和24 h后分別降低了 10%、42%、54%、57%和 58%。提出了一種多維度磨損分析方法來闡釋貝-馬復相耐磨鑄鋼的耐磨機理。65錳鋼板一維磨損分析揭示了沿磨損表面法線方向,貝-馬復相耐磨鑄鋼的加工硬化機理為孿晶、高密度位錯和殘余奧氏體相變,Mn13Cr2的加工硬化機理為位錯纏結和堆垛層錯。
二維磨損分析指出了 Mn13Cr2和貝-馬復相耐磨鑄鋼的二體摩65錳冷軋鋼板擦磨損形式分別主要為黏著磨損和磨料磨損。三維磨損分析闡釋了三體沖擊磨料磨損中應變疲勞,裂紋,犁溝,嵌入磨粒和擠壓堆積是貝-馬復相耐磨鑄鋼的主要磨損機理;嵌入磨粒,犁溝,應變疲勞,切削,擠壓堆積和剝落坑是Mn13Cr2的主要磨損機理。四維磨損分析解釋了鹽霧腐蝕和沖擊磨料磨損共同作用下材料的磨損行為,低程度腐蝕試樣的磨損機理主要仍表現為犁溝、應變疲勞和嵌入磨粒,試樣磨損亞表層變形區較窄。此后隨鹽霧腐蝕時間的延長,犁溝變得更短而深,磨損失重增大,試樣磨損亞表層變形區消失,材料的耐磨性惡化。
65mn錳冷軋鋼板建立了理論公式用以估算貝-馬復相耐磨鑄鋼在鹽霧腐蝕和沖擊磨料磨損協同作用下的磨損失重。試制了一套貝-馬復相耐磨鑄鋼襯板,工業生產的熱處理參數制定為910±10℃保溫5h,強制風冷,310±10℃回火8h,空冷。試制襯板的組織和性能達到指標要求,襯板整體力學性能與耐磨性均勻,工業應用后壽命超過目前使用的國產襯板平均壽命50%以上。
近年來,隨著對汽車產業節能減排及提高性提出越來越高的要求,越來越多的研究者開始研究具有優異綜合力學性能的中錳鋼,以兼顧汽車輕量化65mn錳冷軋鋼板、碰撞性及經濟性的要求。基于成分優化及組織調控,中錳鋼的力學性能得到較大幅度,但在中錳鋼零部件冷加工成型及服役過程中面臨的塑性變形和氫脆問題,日益成為其應用和服役的一個制約性因素。對此,本文針對一種新型的高強塑積含Al中錳鋼0.25C-8.67Mn-0.54Si-2.69Al(wt%),采用預應變、電化學充氫、氫熱分析(TDS)、慢應變速率拉伸(SSRT)、掃描電子顯鏡(SEM)、電子背散射衍射(EBSD)及透射電子顯鏡(TEM)等實驗方法,較為系統地研究了熱軋退火態和冷軋退火態實驗鋼在不同塑性變形量下的觀組織、65錳鋼板力學性能變化及氫脆敏感性的變化規律,可以得到以下結論:熱軋退火實驗鋼主要由片層狀的退火鐵素體+逆轉變奧氏體(RA)組成,其中RA含量約為60 vol%,強塑積高達69.1 GPa·%。
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司主要從事 湖南張家界16錳鋼板的研發、設計、銷售、并且為客戶提供熱情的服務。將 湖南張家界16錳鋼板產品帶給客戶,以市場為導向,專業從事 湖南張家界16錳鋼板的生產加工。細抓每一個工作環節,逐步建立和完善質量保證體系,不斷提高服務水平。