我們的現場實拍視頻將帶您走進應急發電機租賃應急發電含運費含電纜產品的世界,產品視頻細節之美一覽無余!


以下是:應急發電機租賃應急發電含運費含電纜的圖文介紹


柴油發電機組飛輪故障的分析 柴油發電機的飛輪是轉動慣量很大的盤形零件,其作用如同一個能量存儲器。在做功行程中柴油機傳輸給曲軸的能量,除對外輸出外,還有部分能量被飛輪吸收,從而使曲軸的轉速不會升高很多。在排氣、進氣和壓縮三個行程中,飛輪將其儲存的能量放出來補償這三個行程所消耗的功,從而使曲軸轉速不致降低太多。 柴油發電機組飛輪常見的損傷形式是齒圈裂、打壞,嚙合面磨損過多以及飛輪工作表面磨損起槽。維修時應視飛輪損壞情況進行。下面就為大家分析一下: 1,飛輪齒圈如果是單面磨損,可翻面使用,但齒邊需修正倒角。如果齒圈兩面均已磨損嚴重,或牙齒打壞、斷裂,則應更換齒圈。 更換齒圈可采用加熱法進行。在裝配前,將齒圈放入加熱到300°C的機油中使齒圈膨脹,然后迅速將有倒角的一面朝向飛輪,趁熱壓入裝好。 2,飛輪的工作表面磨損起槽或呈波浪狀條紋,應進行磨削,其總磨削量應不大于1.2mm。 3,若齒圈內徑與飛輪過盈量過小或無過盈量時,可采用焊接法定位。焊接時,焊點不可過多,一般在齒圈圓周均勻布置3~4點即可,焊點長度應在20~30mm范圍內,焊點平滑,堆焊量應相等。



發電機組的連桿組由連桿體、連桿蓋、螺栓和軸承組成 連桿組由連桿體、連桿蓋、連桿螺栓和連桿軸承組成,有錳合金結構鋼鍛造而成,并經過淬火、回火和噴丸處理。 連桿小頭用來安裝活塞銷。連桿小頭內壓有兩個襯套,兩個襯套之間的間隙行程凹槽,桿身的油道彼此相通,有桿身孔中進入的機油送到小頭以潤滑活塞銷和襯套。小頭呈楔形,可減輕連桿的重量,并且可使冷卻活塞頂部的機油落下來再次潤滑活塞銷。 連桿桿身連接著連桿的小頭和大頭。桿身呈工字形斷面,這樣既減輕連桿的重量,又保證連桿有足夠的剛度和強度。桿身中間有潤滑小頭的油道,油道在大頭一端偏離連桿中心,其目的是提高軸承的承載能力,當活塞在上止點爆發壓力 時,曲軸上的壓油孔正好對準連桿桿身的油孔,這樣能給活塞銷以充足的潤滑,可延長活塞銷的使用壽命。 連桿大頭為平切口式,連桿蓋和連桿體有兩個圓柱銷定位,并由螺釘依靠精密加工的螺紋將其緊固在兩桿體上(設鎖緊裝置),連桿螺釘的緊力矩為190~203N·m。 在康明斯柴油機上采用兩種不同形式的連桿。這兩種形式的連桿式完全能互換的,并能夠安裝到相同的發動機上。 早期設計的連桿在桿身和蓋上裝有兩個裝配定位環。這種連桿在桿身和蓋上僅有一處平衡臺。現在設計的連桿桿身和連桿蓋上則裝有四個單位環。這種連桿在桿身和蓋上各有一處平衡臺。 連桿大頭中裝有連桿軸承,采用耐磨合金軸瓦。鋼背上面為銅鉛合金層,其合金厚度為0.5mm。其次是捏層,厚度為0.01mm,用以提高覆蓋層的結合性。上面為鍍有銅鉛合金層,提高了軸承承受負荷的能力和耐疲勞性,還具有良好的減磨性和耐蝕性。所以對于鍍有電鍍層的軸瓦,應不就行鏜削或刮削,否則將鍍層搪掉,就完全去原來加覆蓋層的意義了。 在康明斯柴油機上采用了兩種不同的連桿軸瓦。現在的連桿軸瓦比早期的連桿軸瓦具有更大的承載能力,不要將新的和舊的軸瓦混裝在同一連桿上。不同的連桿軸瓦可以從連桿軸瓦背面的零件號來加以識別。永遠不要再同一根連桿上混裝不同型號的軸瓦。




維曼機電設備有限公司 山西陽泉600kw發電機租賃激烈競爭的商海中,始終堅持以客戶為中心,以質量為重點、人才為保證、效益為根本的經營理念,堅持扎扎實實、腳踏實地為客戶服務,為社會發展著想的宗旨。無論是現在還是將來,我們都將始終不渝地遵循這一宗旨。我們真誠的希望與國內外廣大用戶建立長期、友好的戰略合作伙伴關系,互惠互利,共圖發展!



氣缸套高頻振動是柴油發電機產生穴蝕的根本原因 導讀:發生穴蝕破壞的除了柴油發電機氣缸套零件外,還有軸瓦、噴油泵注塞、螺旋槳槳葉及離心泵葉輪等。機件穴蝕破壞問題日益引起人們的關注,尤其是缸套穴蝕已是柴油發電機的重要問題,引起國內外的重視與研究。氣缸套穴蝕是柴油發電機普遍存在的嚴重問題。隨著柴油發電機的功率增加、強載度提高和高速、輕型化,氣缸套穴蝕破壞就成為妨礙柴油發電機正常運轉的首要問題,嚴重地影響柴油發電機的工作可靠性和氣缸套的使用壽命。 一般說來,高速、輕型大功率柴油發電機,不論是開式冷卻還是閉式冷卻,氣缸套都有不同程度的穴蝕。有的柴油發電機投入運轉不久(僅幾十小時)就會在氣缸套外圓表面上出現穴蝕小孔,甚至柴油發電機運轉不足千小時缸套就因穴蝕穿孔而報廢,此時缸套內表面尚未磨損。二沖程十字頭式低速柴油發電機氣缸套基本不發生穴蝕破壞。 1.穴蝕部位:缸套穴蝕發生在濕式氣缸套外圓表面上,一般集中在柴油發電機的左右側方向,特別是承受側推力 一側的偏上方;冷卻水進口、水流轉向處和水腔狹窄處對應的缸壁上;缸套下部密封圈附近缸壁。缸套冷卻水腔除缸套穴蝕外,不應忽視氣缸套和氣缸體材料的差異和材料內部的各種電化學不均勻性導致的宏觀和微觀電化學腐蝕。這兩種腐蝕同時存在或交替進行均會加重缸套的腐蝕。此外,冷卻水(海水或淡水)的水質、含氣量、流速等均對穴蝕有影響。 2.氣缸套穴蝕機理 1)一般穴蝕機理:迄今為止,關于穴蝕機理的論述很多,其中較為普遍接受的一種理論認為:機件發生穴蝕的先決條件是機件浸于液體中,并與液體有相對運動,或機件在液體中受到某種能量的傳遞作用,形成液體中的局部瞬時高壓或瞬時高真空。在瞬時高真空區,液體汽化形成氣泡,或溶于水中的空氣以空泡形式從液體中分離出來;在另一瞬間形成高壓時,空泡、氣泡被壓縮,泡內氣體迅速液化而使氣泡潰滅,這時周圍液體急速沖向潰滅處,產生極強的沖擊波作用在金屬表面。頻繁地沖擊,使機件表面金屬逐漸剝落。與此同時,金屬表面還產生微觀電化學腐蝕,兩種腐蝕交替進行共同作用致使機件穴蝕破壞。 2) 柴油發電機氣缸套外圓表面與氣缸體(或機體)構成冷卻水空間,在狹小的環形通道中流動著淡水或海水。柴油發電機運轉時,由于缸套和活塞之間的間隙,活塞在側推力作用下不斷地沖撞著缸壁的左、右側,使氣缸套產生高頻振動。缸套高頻振動和缸壁的彈性變形使冷卻水空間的容積交替地增大和減小,冷卻水相應交替地膨脹與被壓縮。膨脹時受拉伸作用形成瞬時低壓,被壓縮時形成瞬時高壓。此外,冷卻水進口和流動時產生渦漩使冷卻水通道內壓力變化,也會形成瞬時高壓或低壓。在瞬時低壓時產生氣泡,瞬時高壓時氣泡潰滅,缸套外圓表面頻繁受到沖擊和微觀電化學腐蝕作用而破壞。 3.影響缸套穴蝕的因素:生產中并非所有的筒狀活塞式柴油發電機氣缸套都發生穴蝕破壞,即使是發生穴蝕破壞其程度也各不相同。缸套穴蝕與柴油發電機的機型、結構、爆發壓力、冷卻水腔和冷卻介質、柴油發電機的工藝參數等有關。 1)缸套振動。柴油發電機運轉中氣缸套高頻振動是產生穴蝕的根本原因,缸套振動強度與以下各點有關:(1)活塞與氣缸套之間的配合間隙:活塞在氣缸中運動時,活塞對氣缸壁的沖擊能量的大小取決于活塞質量和活塞在氣缸中橫擺時的速度。活塞質量固定不變,但速度隨著活塞與缸套之間的配合間隙的增加而增大。所以,活塞對缸壁的沖擊能量取決于活塞與缸套配合間隙的大小。配合間隙大,活塞橫擺加速度大,沖擊前壁能量大,則缸套振動增強。(2)缸套剛度:缸套剛度直接影響缸套的振動。剛度大,受活塞沖擊時缸套變形小,振動小,可有效地防止穴蝕。缸套剛度除與其材料有關外,還與缸套壁厚和縱向支承跨距的大小有關,缸壁厚度增加,支承跨距縮短,缸套剛度增大。氣缸套與氣缸體(機體)之間的配合間隙對缸套的剛度亦有影響。如果柴油發電機缸套與缸體鑄成一體,缸套剛度增大,可有效地防止穴蝕。(3)冷卻水腔結構 冷卻水腔通道太窄,水流速度增高,容易產生空泡。柴油發電機設計時要求冷卻水腔內水流速度應小于2m/s,水腔寬度t為14%D (D為氣缸套內徑)或不小于10mm,各處均勻一致,水流暢通不形成死水區和渦流區,有利于降低缸套穴蝕。柴油發電機把冷卻水腔窄處由1.5mm增至7mm,大大降低缸套穴蝕。 2)冷卻水溫度與壓力:冷卻水溫度過高將加速腐蝕的進程,但也不宜長期水溫過低。實驗表明,鋼鐵和鋁等金屬材料在淡水溫度為50~60oC時穴蝕嚴重,隨著水溫的升高,穴蝕破壞減輕。從發揮柴油發電機的效能和降低腐蝕、穴蝕出發,冷卻水腔淡水溫度在80~90oC為好。冷卻水壓力高可以抑制空泡的形成,減少穴蝕的發生。但冷卻水壓力提高將使其溫度升高而加速穴蝕。 4.防止缸套穴蝕的措施 除從材料和結構上的改進來防止和降低缸套穴蝕外,對柴油發電機氣缸套穴蝕,還可采用以下措施: (1)缸套外圓表面覆蓋保護層或強化層。采用鍍鉻、滲氮、噴陶瓷、涂環氧樹脂或涂尼龍等工藝使金屬表面與冷卻水隔開,或使缸套外圓表面強化,可有效地防止電化學腐蝕與穴蝕。 (2)在冷卻水腔內安裝鋅塊實施陰極保護防止電化學腐蝕;例如柴油發電機氣缸套外表面安裝鋅帶并堅持定期更換取得防止穴蝕的良好效果。 (3)在冷卻水中加入緩蝕劑;例如乳化油緩蝕劑或被膜緩蝕劑,使在缸套外表面上形成一層較薄的連續保護膜,不僅可以防止電化學腐蝕,而且可以減弱空泡破裂時的沖擊波對缸套外表面的沖擊作用,從而減輕穴蝕。 結論:在實踐中防止或減輕穴蝕的方法很多,選用時依具體機型、結構和產生穴蝕的原因而定,以取得良好效果。




點擊查看維曼機電設備有限公司的【產品相冊庫】以及我們的【產品視頻庫】