簡約而不簡單,我們的變壓器租賃產品視頻將用直觀的方式展示產品的核心價值。
以下是:變壓器租賃的圖文介紹
本公司坐落于開發區,維曼機電設備有限公司是一家生產 江蘇徐州600kw發電機租賃的專業廠家,公司具有雄厚的技術力量,先進的檢測設備,不斷優化企業管理,以市場需求為導向,科技進步為動力,積j i吸取同行業的先進經驗,廣泛征求用戶意見,取得用戶的親睞和質檢部門認可。 希望各行各業的朋友、領導光臨指導,本公司將為廣大客戶提供更完美優質的服務。
公司秉承以質量求生存,以服務謀發展的宗旨和誠信、務實、創新、奮進的理念歡迎廣大新老客戶前來技術交流與合作。
柴油發電機組的直流電動機啟動 電動機啟動系統由操作人員通過踏板和杠桿操作啟動開關,使電動機的齒輪嚙入飛輪齒圈或者操作人員撳下啟動按鈕,電磁開關通電吸合,控制啟動機和齒輪嚙入輪齒圈帶動柴油機啟動。 1.啟動電動機的離合機構 啟動電動機軸上的嚙合齒輪在啟動時,才與發動機曲軸上的飛輪齒圈相嚙合,而當發動機開始運行后,啟動電動機應立即與曲軸分。否則當發動機轉速升高,使啟動電動機大大超速旋轉,產生很大的離心力,造成損壞,甚至使啟動電動機電樞飛散。因此,啟動電動機必須裝離合機構。啟動時保證啟動電動機的動力能傳遞給曲軸,啟動后能切斷啟動電動機與發動機曲軸的聯系。 常用的離合機構有以下幾種: (1)彈簧離合機構這種機構套裝在啟動機電樞軸上,驅動齒輪的右端活套在花鍵套筒的左端的外圓上,兩個扇形塊裝入齒輪右端相應缺口中并伸人花鍵套筒左端的環檜內,這樣齒輪和花鍵套筒可一起作軸向移動,兩者可相對滑轉。離合彈簧在自由狀態下的內徑小于齒輪和套筒相應外圓面的直徑,安裝時緊在外圓面上。啟動機帶動花鍵套筒旋轉,有使離合彈簧收縮的趨勢,由于離合彈簧被箍在相應外圓面上,于是,啟動機扭矩靠彈簧與外圓面的摩擦傳給驅動齒輪,從而帶動飛輪圈轉動。當機啟動后,齒輪有比套筒轉速快的趨勢,彈簧脹開,離合齒輪在套簡上滑動,從而使齒輪與飛輪齒圈脫開。 該離合機構較簡單,所配用的ST614型啟動機,其電壓為流24V、功率為5.3kW,操作方便,因而得到廣泛應用。 (2)摩擦片式離合機構摩擦片式離合機構。這種離合結構這樣裝配的,內花鍵殼9裝在具有右旋外花鍵上,主動片8套在內花鍵殼9的導槽中,而從動片6與主動片8相間排列,旋裝在花鍵套10上的螺母2與摩擦片之間,裝有彈性3圈,壓環4和調整墊片5。驅動齒輪右端的形部分有一個導槽,從動片齒形凸緣裝入此導槽之中, 裝卡環7,以防止啟動機驅動齒輪1與從動片松脫。離合結構裝好后摩擦片之間無壓緊力。 啟動時,花鍵套10按順時針方向轉動,靠內花鍵殼9與花鍵套10之間的右旋花鍵,使內花鍵殼在花鍵套上向左移動將摩擦片壓緊,從而使離合機構處于接合狀態,啟動機的扭矩靠摩擦片之間的摩擦傳給驅動齒輪,帶動飛輪齒圈轉動。發動機啟動后,驅動齒輪相對于花鍵套轉速加快,內花鍵殼在花鍵套上右移,于是摩擦片便松開,離合機構處于分離狀態。 該離合機構摩擦力矩的調整,即調整墊片5可改變內花鍵殼端部與彈性墊圈之間的間隙,以控制彈性墊圈的變形量,從而調整離合機構所能傳遞的 摩擦力矩。 摩擦片式的離合機構由于可傳動的扭矩較大。因此,通常用于較大啟動扭矩的柴油機上。 2.啟動機電嵫操機構 為柴油機所用的ST614型啟動機的結構圖。它由串激式直流電動機作啟動機,其功率為5.3kW,電壓為24V,此外,還有電磁開關和離合機構等部件組成。 為電磁操縱機構啟動機電氣接線圖。 啟動時,打開電路鎖鑰(即電路開關),然后,撳下啟動按鈕4,電路接通,于是電流通入牽引電磁鐵兩個線圈:即牽引電磁鐵線圈和保持線圈,兩個線圈產生同一方向的磁場吸力,吸引鐵心左移,并帶動驅動杠桿8擺動,使啟動機的齒輪與飛輪齒圈進行嚙合。鐵心1繼續向左移,于是,啟動開關5觸點閉合,啟動直流電動機電路接通,直流電動機開始運轉工作,同時與啟動開關與并聯的牽引線圈被短路失去作用,牽引繼電器由保持線圈所產生磁場吸力保持鐵心位置不動。 啟動后,應及時松開啟動按鈕,使其回到斷開位置,并轉動電路鎖鑰,切斷電源,以防啟動按鈕卡住,電路切不斷,牽引繼電器繼續通電。此時,由于電路已切斷,保持線圈磁場消失,在復位彈簧的作用下,鐵心右移復原位,直流電動機斷電停轉。同時,齒輪驅動杠桿也在復位彈簧的作用下,使齒輪退出嚙合。
1.機油不足時,發電機為什么會自動停機?——當機油不足時,發動機內部的機油警告開關會將點火線圈的初級線圈接地,使點火線圈不能點火,發動機熄火。檢查油位是否標準的方法:將發動機處于水平位置,旋出機油尺,清潔擦干后再插入機油加入口(不必旋轉),然后拔出,檢查油位處于油尺的中部偏上即可。 2.高海拔地區發電機為何輸出功率降低?——高海拔地區的大氣稀薄,化油器主噴嘴向發動機提供的混合燃料由于空氣相對稀少而無法充分燃燒,此時發動機轉速可能不穩,并且消音器冒黑煙。必須通過改換正確的主噴嘴使發動機運轉平穩。發動機的輸出功率隨著海拔的升高而降低,發電機組的輸出功率也降低,海拔每升高1000米,功率降低10%。如果沒有更換正確的主噴嘴,發動機的功率損耗將比這個標準大得多,且工作狀態不穩定。標準型號的主噴嘴只使用于海拔1500米以下。 3.為什么冷機起動要關閉風門,熱機起動要打開風門?——因為發動機處于冷機時起動關閉風門,使進入化油器的空氣減少,提高了混合氣的濃度,這機發動機就更容易起動。如果此時冷機打開風門,混合氣易吸附在進氣道壁上,造成霧化不好,就不容易起動了。因為發動機處于熱機時起動要打開風門,使進入燃燒室的混合氣的比例達到正常,就能輕易的起動了。當關閉了風門,使進入化油器的空氣減少,大大的提高了混合氣的濃度,就會造成不容易起動了。 4.當自動電壓調節器(AVR)損壞需更換時,必須做哪些事項?——發電機組不發電,常見的故障是自動電壓調節器損壞,因此有人在發現發電機組不發電時,常常用新的AVR去替換舊的AVR的辦法來解決。當用戶這樣去做了,發現新AVR使用了幾分鐘后失去作用,然后抱怨AVR的質量不好。其實AVR損壞,常常是因為用戶超載使用發電機組,造成轉子短路,導致AVR損壞,因此在更換AVR之前必須先檢測一下轉子的電阻是否正常(如EC2500CX的電阻是45-50歐母)。如果轉子的電組不正常,要先更換轉子后更換AVR。
柴油發電機組發生故障拉缸了怎么處理 柴油發電機組拉缸故障的表現特征: 1、柴油發電機組發生拉缸后的外部特征是聲音發生變化,排氣冒黑煙。 2、活塞、活塞環及氣缸套工作表面被破壞,氣體密封失效,機油的消耗量及竄氣量迅速增加,使發動機不能正常運轉,甚至在很短的時間內,由于活塞、活塞環與缸套咬死而停車。 柴油發電機組拉缸故障的原因: 1、拉缸的主要原因實際上是活塞、活塞環與氣缸套表明由于高溫而‘熔接’拉傷,即活塞不與氣缸套之間由于油膜中斷產生干磨擦,熾熱的磨擦熱引起金屬的顯微熔化而粘著,并將附近的金屬質點扯斷。 2.柴油發電機組拉缸的根本的原因是油膜中斷。根據氣體密封的要求,活塞環與氣缸套之間的間隙應盡可能小,這就使它們的潤滑條件十分不利。當由于接觸表面超負荷,使氣缸套表面與活塞環工作面之間由于直接接觸而劇烈磨擦,產生大量的磨擦熱,使工作表面的溫度急劇上升,其后果是兩個磨擦表面熔接粘附而造成拉傷。 由此可見,供油狀況不良,竄氣嚴重,零件過大的接觸應力破壞油膜,是造成拉缸的主要原因。除了潤滑、配合間隙、零件制造質量外,使用不當也可能造成柴油發電機組拉缸故障,具體地說有如下幾點: 1.活塞與氣缸套配合間隙過小,或在正式帶負荷工作以前沒有經過良好的磨合。 2.潤滑不良,如間隙小、機油稀或在裝配時未涂油等。 3.柴油機過熱。 4.裝配時機體不清潔或活塞裝得太死。 5.活塞及活塞環質量差。 從使用的角度講,還要注意盡量避免突然增加負荷或緊急停車,起動前 用搖把將曲軸轉動幾圈,使磨擦表面保持一定的潤滑油。 6.機組拉缸的表現油路、電路和氣管密封性,供油不足是很常見的表現,電路的原因需要檢查手動調速或者電子調速是否過高,密封性要檢查氣管卡箍是否密封良好。 柴油發電機組是機動性強的特色供電設備。因其使用基本不受場所的限制,且能夠連續、穩定、地提供電能,因而被廣泛地引用于應急供電設備。作為應急電源,在使用、管理方面有著特殊的要求,避免故障的發生,使供電的保障受影響,甚至導致整機的報廢,造成重大的損失。本文以某單位采用的12V135AJZD高速柴油機配以上海電機(集團)公司革新電機廠生產的T2XU-250-4三相同步發電機作為應急電源,在使用過程中,出現嚴重“拉缸”、活塞燒熔等,導致整機報廢的事故進行分析,探討其故障的原因及避免再次發生此類故障現象的日常管理應注意的問題。 故障分析 上述現象是一起因拉缸導致柴油機報廢的重大事故。從發動機的工作原理可知,引起柴油機產生“拉缸”的原因有很多,如:活塞—連桿組變形,發動機不完全燃燒或后燃,超負荷運轉,冷卻水溫度過高,潤滑油溫度過高或壓力過低等等。這些都可引起柴油機在工作過程中,使活塞與缸套之間因為缺乏一層潤滑油膜的潤滑作用而導致活塞(環)與缸套內壁的直接接觸,在相對的運動過程中,接觸的金屬表面氧化層被磨掉后,金屬原子間的吸引力大,且熔點又相對減低;加上在相對運動過程因摩檫產生大量的熱量沒有及時地被帶走,引起極部高溫,溫度的積累達到一定的值,使兩金屬熔焊在一起。隨著活塞上、下往復運動的撕(推)拉作用,使缸套上的材料比較薄弱部分出現細小裂紋,極少量潤滑油的進入裂紋處后,由于活塞的推壓,裂紋部分形成一個密閉的空間,油壓劇增,裂紋進一步擴張深入,終可使裂紋透過缸套或是撕下金屬碎屑。造成缸套冷卻水漏入油底殼或引起潤滑油濾器的堵塞等事故。另外,由于“拉缸”破壞了原有的活塞與缸套的配合間隙,使吸入的空氣渦動效果變差,噴入燃油的霧化質量變差,引起后燃嚴重,且“拉缸”產生的熱量沒有及時散出去,缸內的溫度上升過高,進而引起活塞頭部的熔化、燒塌等現象。海鋒柴油發電機組提供技術支持。 從上面分析可見,造成上述嚴重事故的根本原因是潤滑不良引起的。該機潤滑系統采用飛濺潤滑的形式,其潤滑油路是這樣:潤滑油從油底殼→粗濾器→潤滑油泵→細濾器→冷卻器,分三路: (1)主軸承→連桿大端軸承→連桿→連桿小端軸承→活塞→油底殼; (2)搖臂軸→凸輪軸→油底殼; (3)蝸輪增壓器,回油底殼。而引起潤滑不良的原因有:潤滑油的氧化粘度大),潤滑油溫度高,潤滑油壓力低或流量小等。因該柴油機發電機組不久前曾對發電機進行大修,同時更換潤滑油,排除潤滑油氧化導致粘度大,但在更換潤滑油之前,沒有對潤滑系統進行清洗,使冷卻效果變差是可能的。在試車過程中,從儀表板的指示值可知,潤滑油的壓力為3.2kg/cm2,而潤滑油溫度達到90~95℃、冷卻水溫度達到85℃左右,溫度偏高,從量油孔可見明顯的油氣冒出(當時已發出警告并提出溫度過高處理的處理意見),導致潤滑油的潤滑性能變差的原因是溫度問題。 而潤滑油冷卻器的冷卻介質是來自發動機冷卻水箱的冷卻水;冷卻水箱采用風冷式,由發動機通過皮帶輪帶動風扇轉動;發動機艙的通風條件差,發動機工作時,室內溫度可達40℃以上。海鋒柴油發電機組提供技術支持。正是由于周圍冷卻介質的溫度高,潤滑油冷卻器臟,使潤滑油冷卻器的冷卻效果變差,潤滑油的溫度偏高,粘度下降,油膜難于形成,運動副間的磨損加劇,磨掉的金屬碎屑掉在油底殼中,被潤滑油泵吸出,細小的金屬碎屑隨潤滑油循環而增加磨料磨損,大顆粒的金屬碎屑堵在濾器中,使進入系統的潤滑油量大大下降,進一步加劇磨損,這就是為什么后來打開的潤滑油細濾器中能發現大量金屬碎屑。終潤滑油濾器的全堵塞,造成斷油,運動副的摩擦熱來不及帶走,使主軸承熔化、拉缸等事故。導致柴油機突然停機。