嚴格的低倍組織和顯微(高倍)組織要求。
軸承鋼圓鋼的低倍組織是指一般疏松、中心疏松和偏析,顯微(高倍)組織包括鋼的退火組織、碳化物網狀、帶狀和液析等。碳化物液析硬而脆,它的危害性與脆性夾雜物相同。網狀碳化物降低鋼的沖擊韌性,并使之組織不均勻,在淬火時容易變形與開裂。帶狀碳化物影響退火和淬火回火組織以及接觸疲勞強度。低、高倍組織的優劣對滾動軸承的性能和使用壽命有很大的影響,所以,在軸承材料標準中對低、高倍組織有著嚴格的要求。
⑤特別嚴格的表面缺陷和內部缺陷要求。
對軸承鋼而言,表面缺陷包括裂紋、夾渣、毛刺、結疤、氧化皮等,內部缺陷包括縮孔、氣泡、白點、嚴重的疏松和偏析等。這些缺陷對于軸承的加工、軸承的性能和壽命有很大的影響,在軸承材料標準中明確規定不允許出現這些缺陷。
⑥嚴格的碳化物不均勻性要求。
在軸承鋼中,如果出現嚴重的碳化物分布不均勻,則在熱處理加工過程中就容易造成組織和硬度的不均勻,鋼的組織不均勻性對接觸疲勞強度有較大的影響。另外,嚴重的碳化物不均勻性還容易使軸承零件在淬火冷卻時產生裂紋,碳化物不均勻性還會導致軸承的壽命降低因此,在軸承材料標準中,對不同規格的鋼材均有明確的特別要求。
硬度 :退火147~241HB 42CrMo圓鋼力學性
42CrMo圓鋼力學性能:
抗拉強度σb (MPa):≥1080(110)
屈服強度 σs (MPa):≥930(95)
伸長率 δ5 (%):≥12
斷面收縮率ψ (%):≥45
沖擊功 Akv (J):≥63
沖擊韌性值 αkv (J/cm2):≥78(8)
硬度 :≤217HB
為提高模具壽命達到80萬模次以上,可對預硬鋼實施淬火加低溫回火的加硬方式來實現。淬火時先在500-600℃預熱2-4小時,然后在850-880℃保溫一定時間(至少2小時),放入油中冷卻至50-100℃出油空冷,淬火后硬度可達50-52HRC,為防止開裂應立即進行200℃低溫回火處理,回火后,硬度可保持48HRC以上。
熱軋圓鋼是一種冶金的專業術語,是圓鋼的一種,屬于建筑用鋼材。
熱軋圓鋼的規格為5.5-250毫米,其中,5.5-25毫米的小圓鋼大多以直條成捆供應,常用作鋼筋、螺栓及各種機械零件:大于25毫米的熱軋圓鋼,主要用于制造機械零件或作無縫鋼管坯。
性能改造編輯 語音
具有淬透性好、硬度高、耐磨性好、熱處理變形小等優點,常用于制作承受重負荷、生產批量大、形狀復雜的冷作模具。但該Q345B低合金圓鋼在使用過程中容易出現脆性大等問題。研究表明,改善Q345B低合金圓鋼中碳化物的形態和分布可有效改善材料韌性。
常見的工藝有鍛造預熱淬火、固溶雙細化工藝、降溫淬火、等溫淬火等。其中固溶雙細化處理是利用熱處理方式,使碳化物細化、棱角圓整化,同時使奧氏體晶粒超細化。其工藝的主要措施是高溫固溶和循環細化。高溫固溶可以改善碳化物的形態和粒度;循環細化的目的在于使奧氏體晶粒超細化。真空熱處理與普通熱處理相比有許多突出的特點,如可防止Q345B低合金圓鋼表面氧化、脫碳;淬火變形小;工藝的穩定性、重復性好;操作、自動化程度高、工作環境好等。隨著要求越來越高,Q345B低合金圓鋼的真空熱處理受到越來越多的關注。
首先被檢測的數據是水或蒸汽的流動速度,即在自然循環冷卻狀態下,在銅冷卻壁與蒸汽冷卻組合下,水或蒸汽的流動速度。水溫差隨著高爐高度變化而變化,通過檢測所有冷卻壁間內部連接水管的水溫,我們可以更清楚地了解到:水溫隨著高爐高度的變化而變化。高爐不同部位的熱量傳輸情況能很好的解釋上述情況。我們應當考慮到,隨著高爐各部位的高度不同,不同的冷卻面積,不同的冷卻強度對熱量傳導計算的影響。
對圓鋼加熱和冷卻時相變的影響
鋼加熱時的主要固態相變是非奧氏體相向奧氏體相的轉變,即奧氏體化的過程。整個過程都和碳的擴散有關。合金元素中,非碳化物形成元素降低碳在奧氏體中的能,增加奧氏形成的速度;而強碳化物形成元素強烈妨礙碳在鋼中的擴散,顯著減慢奧氏體化的過程。
鋼冷卻時的相變是指過冷奧氏體的分解,包括珠光體轉變(共析分解)、貝氏體相變及馬氏體相變。僅舉合金元素對過冷奧氏體等溫轉變曲線的影響為例,大多數合金元素,除鈷和鋁外,均起減緩奧氏體等溫分解的作用,但各類元素所起的作用有所不同。不形成碳化物的(如硅、磷、鎳、銅)和少量的碳化物形成元素(如釩、鈦、鉬、鎢),對奧氏體到向珠光體的轉變和向貝氏體的轉變的影響差異不大,因而使轉變曲線向右推移。
碳化物形成元素(如釩、鈦、鉻、鉬、鎢)如果含量較多,將使奧氏體向珠光體的轉變顯著推遲,但對奧氏體向貝氏體的轉變的推遲并不顯著,因而使這兩種轉變的等溫轉變曲線從“鼻子”處分離,而形成兩個 C形。 [3]
對鋼的晶粒度和淬透性的影響
影響奧氏體晶粒度的因素很多。鋼的脫氧和合金化情況均與“奧氏體本質晶粒度”有關。一般來說一些不形成碳化物的元素如鎳、硅、銅、鈷等阻止奧氏體晶粒長大的作用較弱而錳、磷則有促進晶粒長大的傾向。碳化物形成元素如鎢、鉬、鉻等,對阻止奧氏體晶粒長大起中等作用。強碳化物形成元素如釩、鈦、鈮、鋯等,強烈地阻止奧氏體晶粒長大,起細化晶粒作用。鋁雖然屬于不形成碳化物元素,但卻是細化晶粒和控制晶粒開始粗化溫度的常用的元素。
鋼的淬透性(見淬火)高低主要取決于化學成分和晶粒度。除鈷和鋁等元素外,大部分合金元素溶入固溶體后都不同程度地抑制過冷奧氏體向珠光體和貝氏體的相變,增加獲得馬氏體組織的數量,即提高鋼的淬透性。