不銹鋼的發明是世界冶金史上的一項重大成就。20世紀初,吉耶(L.B.Guillet)于1904年—1906年和波特萬(A.M.Portevin)于1909—1911年在法國;吉森(W.Giesen)于1907—1909年在英國分別發現了Fe—Cr和Fe—Cr-Ni合金的耐腐蝕性能。蒙納爾茨(P.Monnartz)于1908-1911年在德國提出了不銹性和鈍化理論的許多觀點。工業用不銹鋼的發明者有:布里爾利(H.Brearly)1912—1913年在英國開發了含Cr12%—13%的馬氏體不銹鋼;丹齊曾(C.Dantsizen)1911—1914年在美國開發了含Cr14%—16%,C 0.07% —0.15%的鐵素體不銹鋼;毛雷爾(E.Maurer)和施特勞斯(B.Strauss)1912—1914年在德國開發了含C<1%,Cr 15%—40%,Ni<20%的奧氏體不銹鋼。1929年,施特勞斯(B.Strauss)取得了低碳18-8(Cr-18%,Ni-8%)不銹鋼的 權。為了解決18-8鋼的敏化態晶間腐蝕,1931年德國的霍德魯特(E.Houdreuot)發明了含Ti的18-8不銹鋼(相當于現在的1Cr18Ni9Ti或AISI 321)。幾乎與此同時,在法國的Unieux實驗室發現了奧氏體不銹鋼中含有鐵素體時,鋼的耐晶間腐蝕性能會得到明顯改善,從而開發了γ+α雙相不銹鋼。1946年,美國的史密斯埃塔爾(R.Smithetal)研制了馬氏體沉淀硬化型不銹鋼17-4PH;隨后既具有高強度又可進行冷加工成形的半奧氏體沉淀硬化不銹鋼17-7PH和PH15-7Mo等相繼問世。至少,不銹鋼家族中的主要鋼類,即馬氏體、鐵素體、奧氏體、α+γ雙相以及沉淀硬化型等不銹鋼*便基本齊全了,且一直延續到現在。
304和201不銹鋼板如何區分
1、304不銹鋼板和201不銹鋼板從遠處看,表面都是一樣的光澤,亞光色。不過我們可以通過其他方式來鑒別。直接近距離用肉眼觀察的話,304的色澤飽和發亮,手感摸上去非常順滑;而201的話,會略顯發暗,色澤飽和度低,手摸上會有一點粗糙的感覺。沾水實驗的話,304表面的水漬水印非常容易去除,而201處理就很麻煩。
2、通過打磨機來區分:在打磨304不銹鋼板時,火花短、少;而201的則相反,火花四濺且多。大家用這種方法區分時,要保持打磨力度的一致。
3、通過不銹鋼酸洗膏來區分:將洗膏涂抹在304和201上面,觀察其顏色的變化;顏色發白或不變色的話,是304;相反,發黑則為201。
三、304和316各自的特點有哪些?
304鏡面不銹鋼:具有耐高溫,加工性能好、韌性好、耐腐蝕性強等特點。廣泛用于手工業和家具裝飾行業及食品醫療行業。主要用于家庭用品,汽車配件、醫療器材、食品工業,農業,船舶的部件等。
316鏡面不銹銹鋼:具有良好的耐氧化性能和良好的焊接性能。用于紙漿和造紙設備交換器,染色設備,膠片沖洗管道,沿海區域建筑物外部用材,還用于電池閥領域。
不銹鋼的耐蝕性能
腐蝕的種類和定義
一種不銹鋼可在許多介質中具有良好的耐蝕性,但在另外某種介質中,卻可能因化學穩定性低而發生腐蝕。所以說,一種不銹鋼不可能對所有介質都耐蝕。在眾多的工業用途中,不銹鋼都能提供今人滿意的耐蝕性能。根據使用的經驗來看,除機械失效外,不銹鋼的腐蝕主要表現在:不銹鋼的一種嚴重的腐蝕形式是局部腐蝕(亦即應力腐蝕開裂、點腐蝕、晶間腐蝕、腐蝕疲勞以及縫隙腐蝕)。這些局部腐蝕所導致的失效事例幾乎占失效事例的一半以上。事實上,很多失效事故是可以通過合理的選材而予以避免的。
金屬的腐蝕,按機理可分為特理腐蝕、化學腐蝕與電化學腐蝕三種。生活實際、工程實際中的金屬腐蝕,絕大多數都屬于電化學腐蝕。
不銹鋼應力腐蝕開裂(SCC):是指承受應力的合金在腐蝕性環境中由于烈紋的擴展而互生失效的一種通用術語。應力腐蝕開裂具有脆性斷口形貌,但它也可能發生于韌性高的材料中。發生應力腐蝕開裂的必要條件是要有拉應力(不論是殘余應力還是外加應力,或者兩者兼而有之)和特定的腐蝕介質存在。型紋的形成和擴展大致與拉應力方向垂直。這個導致應力腐蝕開裂的應力值,要比沒有腐蝕介質存在時材料斷裂所需要的應力值小得多。在微觀上,穿過晶粒的裂紋稱為穿晶裂紋,而沿晶界擴圖的裂紋稱為沿晶裂紋,當應力腐蝕開裂擴展至其一深度時(此處,承受載荷的材料斷面上的應力達到它在空氣中的斷裂應力),則材料就按正常的裂紋(在韌性材料中,通常是通過顯微缺陷的聚合)而斷開。因此,由于應力腐蝕開裂而失效的零件的斷面,將包含有應力腐蝕開裂的特征區域以及與已微缺陷的聚合相聯系的“韌窩”區域。
高硅含量使00Cr18Ni15Si4鋼對濃硝酸和含氧化劑的硝酸有非常出色的耐蝕性。而且硝酸濃度愈高(尤其是超過80%以后),其他不銹鋼越不耐蝕時,該鋼種越顯示出極低的腐蝕率。圖4-15是在沸騰濃硝酸中該鋼種與0Cr18Ni9鋼耐蝕性的對比。濃度超過90%的沸騰硝酸中,00Cr18Ni15Si4鋼的腐蝕率低于0.02mm/a,而0Cr18Ni9鋼的腐蝕率則在1.5mm/a以上。
該鋼種由于碳含量極低,即使在敏化狀態下耐晶間腐蝕性能也很好。休氏法晶間腐蝕實驗(65%HNO3,沸騰,10×48h)的腐蝕率僅為0.6g/(m2.h)。
00Cr18Ni15Si4鋼可進行鍛造和熱軋。熱加工加熱溫度為1080-1140℃(鋼錠加熱控制在1120℃以下),停鍛溫度為900℃。加熱爐氣氛要保持為弱氧化性,以防止鍛件增碳。工件加熱要均勻、燒透,避免火焰直接噴射和局部過熱,由于再結晶速度較慢(特別是當溫度較低時),要注意及時回爐加熱。
冷加工成形也容易進行,但由于加工硬化較快及變形量較大時容易變脆,要及時進行中間軟化退火。冷彎時彎曲半徑不宜太小。
該鋼種正確的熱處理制度為1100-1140℃加熱后水冷(固溶處理),加熱爐氣氛應為弱氧化性。熱加工、冷加工和焊后都要進行固溶處理。要注意固溶處理溫度不能過低,否則耐蝕性和力學性能(塑性和韌性)都會受影響。在敏化溫度區間(500-950℃)不宜較長時間受熱或緩慢冷卻通過。
該鋼種可使用包劑焊條進行手工電弧焊或惰性氣體保護焊。但應采用和低熱輸入、低電流和小直徑焊條,層間溫度也應較低。焊接材料成分應與母材基本相同,焊縫中的δ-鐵素體量不得超過10%。