億錦天澤鋼鐵有限公司
隨著代替灰鑄鐵、可鍛鑄鐵和鑄銀件,能親眼看到球鐵生產噸位的持續增加。出版的刊物對于幫助造廠在這面的力是有利的,雖然計值會變提高而改善。 鑄鐵型材在重工業中需求量大,被廣泛應用于交通運輸、機床、印刷、農業機械等支柱行業。拉坯工藝參數設置是鑄鐵型材生產中的關鍵環節,設置不合理會導致拉漏、拉斷等生產事故和產生表面裂紋等鑄造缺陷。現有鑄鐵型材生產企業拉坯工藝參數控制技術參差不齊,尚無完整的理論體系。對鼓肚缺陷,在鑄鐵型材的水平連鑄過程中采用反弧度法工藝,即通過新型的石墨套與引錠裝置來實現的,通過實施反弧度法工藝,鑄鐵型材的鼓肚現象得到有效。但由于在率次實驗過程中,剛開始生產鑄鐵型材時的拉拔速度比較慢、拉拔周期較長,使鑄鐵型材在結晶器的停留時間過長,導致在扁平方向上鑄鐵型材頂部略微向下凹,當拉拔參數調整合適時,下凹及鼓肚現象基本消失。 實現高質量、率的鑄鐵型材水平連鑄拉坯生產。前面我們已討論過化合態的滲碳體,它若加熱到高溫,便會分解為鐵和碳(Fe2C→3Fe。所以化合態的滲碳體只是一種亞穩定相,而游離態的石墨則是一種穩定相。 但鐵水溫度低于1450“C后孕育效果很差,RG值幾乎不變。由表3可得:孕育鑄鐵的質量指標用鑄造焦熔煉的比用冶金焦熔煉的高18%,值得注意的是相對硬度反而降低3%。鑄鐵中石墨的形成過程稱為石墨化過程。
球化反應控制的關鍵是鎂的吸收率,溫度高,反應激烈,時間短,鎂燒損多,球化效果差;溫度低,反應平穩,時間長,鎂吸收率高,球化效果好。因此,一般在保證足夠澆注溫度的前提下,宜盡可能降低球化處理溫度,控制在1420~1450℃。球化劑要砸成小塊,粒度一般在5~25mm,加在包底,再在上面加硅鐵和鐵屑。與實施反弧度法之前的鑄鐵型材相比,實施反弧度法之后的鑄鐵型材硬度得到提高,組織更為均勻,并且其抗拉強度指標高于鑄鐵型材標準(JBT10854-2008水平連續鑄造鑄鐵型材) 性能要求。同時,伸長率指標均超過LZQT500-7規定的指標。與拉伸性能結果類似,反弧度法試樣的抗壓強度高于未實施反弧度法試樣的抗拉強度。 基于Matlab軟件建立以鑄造工藝參數為輸入,拉坯工藝參數為輸出的控制模型。仿真實驗表明本文建立的拉坯工藝參數GA-BP神經網絡控制模型可以用于拉坯工藝參數自適應整定,所獲得拉坯工藝參數能夠用于實際生產系統,實現高質量、率的鑄鐵型材水平連鑄拉坯生產。球化劑和孕育劑要在出鐵前加入包中,在連續生產時,剛出完前一爐鐵后,包很熱,過早加入會使其粘結在包底而削弱球化和孕育效果。為了延遲球化反應時間,增強球化和孕育效果,要在球化劑和孕育劑的上面覆蓋一層鐵屑。球化處理的方法較多,一般多采用操作簡便的沖入法處理球鐵。
億錦天澤鋼鐵有限公司