<中高硫煤利用過程中產生大量的SOx排放到空氣中,對環境造成嚴重的污染,這導致其利用困難。為實現中高硫煤清潔利用,基于軟錳礦中二氧化錳的強氧化性,采用電場與軟錳礦聯合的技術促進高硫煤脫硫,重點考察不同反應條件對高硫煤脫硫率及軟錳礦中錳的浸出率的影響,利用XRDFTIRXPS等分析測試方法,研究脫硫反應前后煤元素組成、硫含量等主要性質變化,探究其脫硫機理。結果表明,當軟錳礦與高硫煤質量比為1/7煤漿質量濃度為0.05 g/mL反應時間5 h反應溫度80℃初始硫酸濃度為1.2 mol/L電流密度為600 A/m~2時,與預處理煤相比,高硫煤脫硫率可達40.56%錳的浸出率為95.23%。65錳冷軋鋼板45號冷軋鋼板40cr鋼板42crmo鋼板耐磨鋼板NM400本文對比了經相同軋制工藝和熱處理工藝處理后的含Nb量0.045%和不含Nb元素耐磨鋼板的組織演變規律和力學性能。耐磨鋼板nm500實驗結果表明添加了質量分數為0.045%的Nb元素鋼板的抗拉強度和硬度低溫沖擊韌性都得到了一定程度的。從材料組織決定力學性能的角度分析鋼板力學性能的主要是由于Nb元素的添加使鋼板原始奧氏體晶粒細化導致的。
在常規低合金馬氏體耐磨鋼合金成分的基礎上耐磨鋼板錳13添加一定量的Ti元素通過冶煉連鑄過程中形成大量米、亞米超硬Ti C陶瓷顆粒并結合控制軋制和控制熱處理的工藝控制使其彌散均勻分布在板條馬氏體基體上研發出一種新型連鑄坯內生超硬Ti C陶瓷顆粒增強耐磨性超級耐磨鋼板并在國內某鋼廠進行了工業化生產;分析了連鑄、耐磨鋼板nm360熱軋和離線熱處理過程時實驗鋼中Ti C的演變規律和組織性能的變化并研究了其耐磨性能。結果表明新型鋼板中由于較多Ti元素的添加在連鑄凝固過程中形成仿晶界的米、亞米級的超硬Ti C粒子軋制和離線熱處理過程中仿晶界的Ti C粒子在馬氏體基體中彌散均勻分布;耐磨性測試表面在同等硬度的條件下新型耐磨鋼板的耐磨性達65錳冷軋鋼板45號冷軋鋼板40cr鋼板42crmo鋼板耐磨鋼板NM4
65錳冷軋鋼板45號冷軋鋼板40cr鋼板42crmo鋼板;耐磨鋼板nm400錳資源是重要的戰略礦產之一,我國是全球 的錳資源消費國和進口國,進口量近年來持續居高不下,再加上錳礦資源日益趨緊、產能嚴重過剩、錳渣污染嚴重、“小散亂”無序發展等嚴峻問題,導致了國內錳礦資源面臨著較大的壓力,對產業鏈的保障構成了威脅。本文從資源端、冶煉端、材料端、產品端和回收端5個方面梳理我國錳礦資源及其材料的產業供應鏈,圍繞我國錳產業發展的現狀及前景、錳產業的綠色低碳循環發展、推動錳產業結構調整、錳資源儲備等目標展開探討,研究建議:踐行綠色發展路徑,實現錳渣的綜合利用;保障國內錳資源儲備,建立可控的資源供給體系;提高行業集中度,優化錳產業結構;加大錳資源科研投入,促進科技成果轉化。 65錳冷軋鋼板45號冷軋鋼板40cr鋼板42crmo鋼板;耐磨鋼板nm400U型缺口相較于V型缺口斷后伸長率略高但兩者均遠遠小于光滑試樣的斷后伸長率。對低合金耐磨鋼板不同厚度處的力學性能進行研究分析其差異及其產生的原因。NM500耐磨鋼板中厚度中心存在低硬度區在上下表面存在較多偏析帶因而導致其硬度值的波動較大。厚度中心試樣的強度、塑性較差但標準差較小;厚度中心試樣的強度與塑性均低于厚度四分之一與厚度四分之三處;軋向試樣的拉伸性能均勻性較之橫向更好。厚度方向的抗拉強度和斷后延伸率均低于橫向、軋向試樣。偏析帶處組織回火后仍保持板條狀馬氏體形態硬度及強度較高。而厚度中心處組織回火后碳化物呈條狀和粒狀分布硬度及強度較低。夾雜物評級B類和DS類夾雜物厚度中心處明顯比上下1/3處數量更多級別更高。耐磨鋼板mn13厚度中心處含Ti夾雜物數量多、尺寸大發現沿晶析出形態的成條狀的含Ti夾雜物。
65錳冷軋鋼板45號冷軋鋼板40cr鋼板42crmo鋼板耐磨鋼板NM400通過對秀山土家族苗族自治縣8個錳礦影響區的土壤重金屬(Mn、Hg、As、Cd、Cu、Pb、Zn、Cr、Ni)含量進行測定分析,以長江流域各重金屬元素背景值、土壤環境質量農用地土壤污染風險篩選值為評價標準,應用單因子污染指數法、Nemero綜合污染指數法和Hakanson潛在生態危害指數法對土壤重金屬潛在生態風險進行了評價。結果表明:對比長江流域各重金屬元素背景值,研究區部分點位超標,Cd和Zn點位超標率高達超標倍數 達9.36倍;對比農用地土壤環境質量標準,研究區Cd、Cr、Cu、Ni和Zn存在超標現象,且Cd點位超標率高達66.67%;單因子污染指數法及Nemero綜合污染指數法評價結果均顯示研究區存在Cd輕微污染,考慮到秀山處于Cd高背景值區,Cd輕微污染的原因還需進一步研究;潛在生態風險評價結果顯示,黃家河腳錳礦和嘉源錳礦影響區存在中等生態危害,應予以重視。 回火后空冷耐磨鋼板錳13獲得的組織為回火板條馬氏體+少量殘余奧氏體可以使實驗鋼獲得優良的硬度和強韌性配合。在此熱處理工藝條件下4組實驗鋼均達到國外企業生產的該級別耐磨鋼的綜合性能:含Nb量為0.043%的2#實驗鋼經850℃保溫30min后水淬再經250℃回火60min后空冷獲得的組織為回火板條馬氏體+少量殘余奧氏體組織布氏硬度值為484、抗拉強度Rm=1652MPa、耐磨鋼板nm450屈服強度Rp=1412MPa、斷后延長率δ=10.8%、室溫和-40℃沖擊功值分別為53.3J和51.3J達到了NM500低合金高強度耐磨鋼的標準要求并具有優良的沖擊韌性超過了國外廠家生產的同級別耐磨板的沖擊韌性為該淬火與低溫回火熱處理工藝下的 成分和熱處理方案。實驗鋼經等溫淬火與低溫回火后的組織為回火馬氏體+黑色針狀下貝氏體。實驗鋼在850~930℃范圍保65錳冷軋鋼板45號冷軋鋼板40cr鋼板42crmo鋼板耐磨鋼板NM4
45號冷軋鋼板65錳冷軋鋼板40cr鋼板42crmo鋼板耐磨鋼板NM500在常規低合金馬氏體耐磨鋼合金成分的基礎上添加一定量的Ti元素通過冶煉連鑄過程中形成大量米、耐磨鋼板錳13亞米超硬TiC陶瓷顆粒并結合控制軋制和控制熱處理的工藝控制使其彌散均勻分布在板條馬氏體基體上研發出一種新型連鑄坯內生超硬TiC陶瓷顆粒增強耐磨性超級耐磨鋼板并在國內某鋼廠進行了工業化生產。耐磨鋼板nm400分析了連鑄、熱軋和離線熱處理時實驗鋼中TiC的演變規律和組織性能的變化并研究了其耐磨性能。結果表明新型鋼板中由于較多Ti元素的添加在連鑄凝固過程中形成仿晶界的米、亞米級的超硬TiC粒子軋制和離線熱處理過程中仿晶界的TiC粒子在馬氏體基體中彌散均勻分布;耐磨性測試表明在同等硬度的條件下新型耐磨鋼板的耐磨性達到傳統馬氏體耐磨鋼的1.5~1.8倍具有優異的耐磨性能。
針對50 mm厚規格的NM500耐磨鋼板經火焰切割后存在的延遲裂紋現象從裂紋形貌、夾雜物和組織特征、硬度分布以及產生機理等方面進行了研究.火焰切割后的宏觀形貌表明:在NM500鋼板的厚度中心區域存在進行比較發現BDDA對菱錳礦具有優異的選擇性。在BDDA體系下抑制劑水玻璃、六偏磷酸鈉、木質素磺酸鈉和殼聚糖等均對目的礦物的抑制效果較弱且六偏磷酸鈉和水玻璃對菱錳礦具有輕微的活化作用而對鈣鎂碳酸鹽礦物的抑制作用較強。同時考察了BDDA體系下幾種金屬離子對礦物浮選行為的影響。人工混合礦浮選實驗中在菱錳礦與方解石的混合分離中加入2×10-4mol/L的BDDA可獲得Mn品位為24.08%回收率為75%的菱錳礦。在菱錳礦與菱鎂礦的混合分離中木質素磺酸鈉的加入不僅可以獲得Mn品位為26.79%回收率為93%的菱錳礦精礦。在菱錳礦、方解石和菱鎂礦的浮選分離中當BDDA的用量為2×10-4mol/L時可將Mn品位由15.90%提高至17.88%獲得回收率為85.09%的菱錳礦。由此可見BDDA是菱錳礦浮選中一種極具前景的捕收劑。通過浮選溶液化學、Zeta電位、紅外光譜和XPS分析表明:BDDA與三種礦物均屬于物理靜電作用。BDDA對三種礦物具有選擇性是由于在堿性條件下菱錳礦的溶液中存在Mn45號冷軋鋼板65錳冷軋鋼板40cr鋼板42crmo鋼板耐磨鋼板N