ZW32-40.5/T1600-40廠家
更新時間:2025-02-07 21:39:49 瀏覽次數:5 公司名稱: 樊高電氣銷售部有限公司
產品參數 | |
---|---|
產品價格 | 111/個 |
發貨期限 | 1 |
供貨總量 | 100000 |
運費說明 | 12 |
真空斷路器 | ZW7-35 |
![ZW32-40.5/T1600-40廠家](http://2024aiimg.17za.com//ypm_soft/48/95/202401151939392029.jpg)
![](http://www.yikoo.net/images/play.png)
)嚴格進行交接驗收。真空開關出廠前
已做過試驗,但在運往現場安裝完畢后,必須進行有關參數的復核。以防止設備在運輸中的變化,特別是操動機構與真空開關連接后的問題。主要復測的參數有:合閘跳,分閘同期,開距,超程,合、分閘速度,合、分閘時間,直流接觸電阻,斷口絕緣水平。 (2)重視緩沖特性的調整。操動機構在高壓真空開關機械結構中是為復雜、精度要求高的部分,為了保證高壓真空開關的可靠性,一般采取分裝式結構,即將操動機構與開關主
體二者分開,由生產條件比較好的工廠集中生產操動機構,然后再將機構的輸出軸與開關合而為一,所以機械參數的合理配置與調整,直接關系到高壓真空開關的技術性能和機械壽命。滿意的緩沖特性應該是運動部件接觸緩沖瞬間,緩沖器提供較小的反力,隨著緩沖距離的增加,緩沖特性迅速變陡,大可能地吸離能量,達到限制分閘反和分閘行程的目的。 (3)嚴格控制真空開關的合、分閘速度。真空開關的合閘速度過低時,會由
于預擊穿時間加長,而增大觸頭的磨損量。又由于真空開關滅弧室一般采用銅焊工藝,并且經高溫下去氣處理,所以它的機械強度不高,耐振性差。如果開關合閘速度過高會造成較大的振動,還會對波紋管產生較大沖擊,降低波紋管壽命。通常真空開關的合閘速度為0.6~2m/s,對一定結構的真空開關有著佳合閘速度。真空開關斷路時的燃弧時間短,其大燃弧時間不超過1.5 個工頻半波,因此,需要嚴格控制開關的分閘速度。此外,要
求真空開關的分閘緩沖器與合閘緩沖器有較好的特性,盡量減輕分閘或合閘時的沖擊力,以保護真空滅弧室的使用壽命。3、溫升 高壓真空開關的回路電阻是影響溫升的主要原因,而滅弧室的回路電阻通常要占高壓真空開關回路電阻的50%以上。觸頭間的接觸電阻是真空滅弧室回路電阻的主要組成部分,因為觸頭系統密封于真空滅弧室內,觸頭與外殼之間的真空形成了熱絕緣,所以觸頭和導電桿上的熱量只能通過動、靜導電桿
向外部傳導散熱。真空滅弧室靜端直接與靜支架相連,動端則通過導電夾、軟連接與動支架相連。因動端連接環節較多,導熱路徑較長,所以高壓真空開關溫升的高點多集中于動導電桿與導電夾搭接部位。在實際應用中,有效的利用靜端有利于散熱的元件,迫使觸頭間隙熱量較多的從靜端導出,分流動端的熱量,是解決高壓真空開關溫升偏高的有效措施。4、結論 真空開關優越的技術應用特性,得到了廣大用戶的普遍認可,隨
著經濟建設的持續增長,今后將得到越來越廣泛的應用。
)磁吹斷路器。斷路時, 利用本身流過的大電流產生的電磁力將電弧迅速拉長而吸人磁性滅弧室內冷卻熄滅。高壓斷路器斷路器在電力系統中起著兩方面的作用:一是控制作用,即根據電力系統運行需要,將一部分電力設備或線路投入或退出運行;二是保護作用,即在電力設備或線路發生故障時,通過繼電保護裝置作用于斷路器,將故障部分從電力系統中迅速切除,保證電力系統無故障部分的正常運行。高壓斷路器的類型很多,但就其結構來講,都是由開斷元件、支撐絕緣件、傳動元件、基座及操動機構五個基本部分組成。開斷元件是斷路器的核心元件,控制、保護等方面的任務都需由它來完成。其他組成部分都是配合開斷元件,為完成上述任務而設置的。斷路器按其所采用的滅弧介質,可分為下列幾種類型:(1)油斷路器:采用變壓器油作滅弧介質的斷路器,稱 為油斷路器,如斷路器的油還兼作開斷后的絕緣和帶電部分與接地外殼之間的絕緣介質,稱為多油斷路器;油僅作為滅弧介質和觸頭開斷后的絕緣介質,而帶電部分對地之間的絕緣介質采用瓷或其他介質的,稱為少油斷路器。主要用在不需頻繁操作及不要求高速開斷的各級電壓電網中。(2)六氟化硫(SF6)斷路器:采用具有優良滅弧性能和絕緣性能的SF6氣體作為滅弧介質的斷路器,稱為SF6斷路器,在電力系統中廣泛應用。適用于頻繁操作及要求高速開斷的場合,在我國在7.2—40.5選用SF6斷路器,特別是126KV以上幾乎全部選用SF6斷路器。但不適用于高海拔地區。(3)真空斷路器:利用真空的高介質強度來滅弧的斷路器,稱為真空斷路器,現已大量應用在7.2—40.5KV電壓等級的供(配)電網絡上也主要用于頻繁操作及要求高速開斷的場合,但在海邊地區使用時,應注意防凝露,因為會使斷路器滅弧室滅弧能力下降。
因此如何合理的設置鐵芯以及如何合理的設計鐵芯結構成為提高真空滅弧室可靠性的關鍵。針對杯狀縱磁真空滅弧室觸頭,本文設計了兩種不同結構的鐵芯,一種是結構為環狀的鐵芯,為了減小渦流的影響,在環形鐵芯上開一個間隙為1 mm 的斷口;另一種結構為圓周方向布置的柱狀鐵芯,柱狀鐵芯相互不接觸,因此可以更好的減小渦流的影響。采用有限元分析方法對比分析了兩種不同結構鐵
芯對縱向磁場和剩余磁場以及磁場滯后時間的影響。 觸頭結構模型 文中仿真所采用的兩種不同鐵芯結構的觸頭模型如圖1 所示,觸頭杯均有4 個杯指,為了防止觸頭片上產生渦流,對應的在觸頭片上開有四個周向均勻布置的徑向直槽。觸頭外徑尺寸為78 mm,壁厚11 mm,弧柱直徑與觸頭外徑尺寸相同,柱狀鐵芯12 個,仿真模型中觸頭開距為10 mm,杯座材料為無氧銅,支撐盤材料為不銹鋼,觸頭片材觸頭在高真空中分離時,其電弧表現形式與外觀特性都與在空氣中的情形有較大區別。真空斷路器的擊穿機理目前主要有場致發射、粒撞擊和粒子交換
三種假說,在短間隙真空斷路器的相關研究中,通常由場致發射效應占主導。在觸頭斷開時刻,整個陰極表面會產生金屬蒸氣。理論上是由于觸頭分開瞬間,電流集中在觸頭表面某點上,導致金屬橋熔化且部分金屬原子發生電離。隨著觸頭開距的增大,場致發射與間隙擊穿增強,觸頭表面金屬凸點不斷溶化并向觸頭間隙補充金屬粒子。此時陰極斑點會在陰極表面形成,并有更多的高能等離子體形成并擴散至間隙內。電弧引燃后,充滿等離子體的電極間
隙變成良好導體,同時陽極開始向電弧提供粒子。在縱向磁場作用下,電弧等離子體由觸頭中心向周圍擴散,此過程會維持一段時間。對于交流真空斷路器而言,電流到達峰值后會逐漸減小,兩觸頭向等離子體提供的粒子同樣減少,此時電極間隙內主要為弧后殘存粒子,伴隨著觸頭完全斷開,殘存粒子逐漸擴散至消失,斷路器完成開斷。 真空電弧等離子體的產生過程,可以表現為觸頭開距增大、觸頭表面金屬蒸發,伴隨場致發射效應和金
屬電離,由于兩極電子、金屬離子的不斷補充,終形成電弧。在電弧等離子體的研究方面,王景、武建文等運用連續光譜法分析了電子溫度和電子密度,并討論了中頻情況下,電弧過渡及擴散兩種形態。胡上茂、姚學玲等利用RC 阻容式電荷收集器,對初始等離子體的觸發特性進行了研究。舒勝文、黃道春等通過對真空斷路器開斷過程的再研究,提出數值方針結合實驗的方法,給出開斷過程不同階段所需的數值仿真方法及關注點。趙子玉等通過C
CD 攝像技術,分析了真空電弧的重燃及抑制措施
對采集數據進行形態學操作,得到內部高能等離子體及電弧外部輪廓的時間-
面積變化曲線。從引弧、穩定燃弧、熄弧及弧后介質恢復四個角度,對不同階段的電弧面積變化做出定量分析,并探究電弧熄弧階段電弧內外面積差變化。實驗表明,通過分析不同階段的等離子體形態變化,能夠找到電弧平穩燃弧及弧后介質恢復的關鍵點,為高壓等級真空斷路器研發設計及后期電弧形態診斷提供進一步參考。 隨著我國電力系統的不斷發展,真空斷路器的生產數量逐漸超過中壓SF6開關。由于其體積小、開斷壽命長和電
流容量大等優點,真空斷路器的應用范圍越來越多向高壓、超高壓擴展。真空電弧是斷路器觸頭斷開時,依靠蒸發金屬蒸氣并電離來維持的低溫等離子體,其形成、發展和后熄滅對開斷電路有著重要影響。研究真空電弧等離子體的形態特征,對斷路器電場、磁場設計有很好的指導作用。 通過對高速攝像機采集到一組真空電弧分析,t= 0.2~6.8 ms 為引弧和穩定燃弧階段,此階段電弧形態主要為陰極斑點形成和電弧等離子體充滿真個觸頭間隙,因此時兩極不斷向間隙補充電子及高能粒子,故此時雖電弧整體輪廓不斷增大,但擴散現象并不明顯。為更加清晰地展示內外電弧幾何形態區別,本文主要對熄滅階段及弧后介質恢復階段的電弧形態做出
后期處理,對穩定燃弧階段的內部高能等離子體形態未做出細節分析。t=6.9ms 開始為真空熄弧階段,內外面積差開始激增,內部高能等離子體面積逐漸減小,電弧外部輪廓在縱向磁場作用下維持擴散狀態,其電弧原始圖像與內部高能等離子體分布二值圖像如圖6。圖中可看出內部高能電弧即將從兩極分斷開來,外部電弧輪廓基本維持在穩定擴散狀態。 t = 7.5 ms 以后熄弧階段開始向弧后介質恢復階段過渡,內部等
離子面積分布迅速減小,外部電弧輪廓也出現縮小現象,