JCQ-4B避雷器放電計數器廠家
更新時間:2025-01-26 22:00:53 瀏覽次數:4 公司名稱: 樊高電氣銷售部有限公司
產品參數 | |
---|---|
產品價格 | 23/個 |
發貨期限 | 1 |
供貨總量 | 888888 |
運費說明 | 1 |
計數器 | JS-10 |
放電計數器 | JS-8 |
這些電源防雷器對于通過了用戶供電入口處浪涌放電器的剩余浪涌能量進行更完善的吸收,沖擊容量為每相45kA以上,要求的限制電壓應小于1200V,稱之為CLASS Ⅱ級電源防雷器。一般用戶供電系統做到第二級保護就可以達到用電設備運行的要求了第二級電源防雷器采用C類保護器
進行相—中、相—地以及中—地的全模式保護,主要技術參數為:雷電通流容量大于或等于40KA(8/20μs);殘壓峰值不大于1000V;響應時間不大于25ns。第三級保護目的是終保護設備的手段,將殘余浪涌電壓的值降低到1000V以內,使浪涌的能量不致損壞設備。在電子息設備交流電源進線端安裝的電源防雷器作為第三級保護時應為串聯式限壓型電源防雷器,其雷電通流容量不應低于10KA。后的
防線可在用電設備內部電源部分采用一個內置式的電源防雷器,以達到完全小的瞬態過電壓的目的。該處使用的電源防雷器要求的大沖擊容量為每相20KA或更低一些,要求的限制電壓應小于1000V。對于一些特別重要或特別敏感的電子設備具備第三級保護是必要的,同時也可以保護用電設備免受系統內部產生的瞬態過電壓影響。對于波通設備、移動機站通設備及雷達設備等使用的整流電源,宜視其工作電壓的保護需要分別選用
工作電壓適配的直流電源防雷器作為末級保護。第四級及以上根據被保護設備的耐壓等級,假如兩級防雷就可以做到限制電壓低于設備的耐壓水平,就只需要做兩級保護,假如設備的耐壓水平較低,可能需要四級甚至更多級的保護。第四級保護其雷電通流容量不應低于5KA。 [4] 由于電力系統中如單相接地、長線電容效應以及甩負荷等各種原因,會引起工頻電壓的升高或產生幅值較高的暫態過電壓,避雷器具有在一定時間內承受
一定工頻電壓升高能力。金屬氧化物避雷器(MOA)在正常工作時與配變并聯,上端接線路,下端接地。當線路出現過電壓時,此時的配變將承受過電壓通過避雷器、引線和接地裝置時產生的三部分壓降,稱作殘壓。在這三部分過電壓中,避雷器上的殘壓與其自身性能有關,其殘壓值是一定的。接地裝置上的殘壓可以通過使接地引下線接至配變外殼,然后再和接地裝置相連的方式加以。對與如何減小引線上的殘壓就成為保護配變的關鍵所在。引線的
阻抗與通過的電流頻率有關,頻率越高,導線的電感越強,阻抗越大。
從U=IR可知,要減小引線上的殘壓,就得縮小引線阻抗,而減小引線阻抗的可行方法是縮短MOA距配變的距離,該壓降通過配變外殼同時作用在低
壓側繞組的中性點處。因此低壓側繞組中流過的雷電流將使高壓側繞組按變比感應出很高的電勢(可達1000 kV),該電勢將與高壓側繞組的雷電壓疊加,造成高壓側繞組中性點電位升高,擊穿中性點附近的絕緣。如果低壓側安裝了MOA,當高壓側MOA放電使接地裝置的電位升高到一定值時,低壓側MOA開始放電,使低壓側繞組出線端與其中性點及外殼的電位差減小,這樣就能或減小“反變換”電勢的影響。3. MOA接地線
應接至配變外殼MOA的接地線應直接與配電變壓器外殼連接,然后外殼再與大地連接。那種將避雷器的接地線直接與大地連接,然后再從接地樁子上另引一根接地線至變壓器外殼的作法是錯誤的。另外,避雷器的接地線要盡可能縮短,以降低殘壓。4. 嚴格按照規程要求定期檢修試驗定期對MOA進行絕緣電阻測量和泄露電流測試,一旦發現MOA絕緣電阻明顯降低或被擊穿,應立即更換以保證配變運行。在日
常運行中,應檢查避雷器的瓷套表面的污染狀況,因為當瓷套表面受到嚴重污染時,將使電壓分布很不均勻。在有并聯分路電阻的避雷器中,當其中一個元件的電壓分布增大時,通過其并聯電阻中的電流將顯著增大,則可能燒壞并聯電阻而引起故障。此外,也可能影響閥型避雷器的滅弧性能。因此,當避雷器瓷套表面嚴重污穢時,必須及時清掃。檢查避雷器的引線及接地引下線,有燒傷痕跡和斷股現象以及放電記錄器是否燒通過這方面的檢查
,容易發現避雷器的隱形缺陷;檢查避雷器上端引線處密封是否良好,避雷器密封不良會進水受潮易引起事故,因而應檢查瓷套與法蘭連接處的水泥接合縫是否嚴密,對10千伏閥型避雷器上引線處可加裝防水罩,以免雨水滲入;檢查避雷器與被保護電氣設備之間的電氣距離是否符合要求,避雷器應盡量靠近被保護的電氣設備,避雷器在雷雨后應檢查記錄器的動作情況;檢查泄漏電流,工頻放電電壓大于或小于標準值時,應進行檢修和試驗;放電記
錄器動作次數過多時,應進行檢修;瓷套及水泥接合處有裂紋;法蘭盤和橡皮墊有脫落時,應進行檢修。避雷器的絕緣電阻應定期進行檢查。測量時應用2500伏絕緣搖表,側得的數值與以前一次的結果比較,無明顯變化時可繼續投入運行。絕緣電阻顯著下降時,一般是由密封不良而受潮或火花間隙短路所引起的,當低于合格值時,應作特性試驗;絕緣電阻顯著升高時,一般是由于內部并聯電阻接觸不良或斷裂以及簧松弛和內部元件分離等
造成的。為了能及時發現閥型避雷器內部隱形缺陷,應在每年雷雨季節之前進行一次性試驗。
放電計數器是串聯在避雷器下面,用來記錄避雷器動作次數,掌握雷電活動規律,研究電力系統在大氣過電壓作用時的運行情況的的電氣設備。放電計數器的電氣回路由非線性電阻R1、R2、電容器C及計數器L組成,即放電計數器串聯在避雷器下部與地之間,如圖1所示。圖1放電計數器電器回路圖圖1放電計數器電器回路圖放電計數器一般與35kV及以上普通閥型避雷器配合使用,
當雷電流經過避雷器進入放電計數器時,電流的一部分經R1入地,另一部分經R2給電容器C充電,沖擊電流過去后,電容器C對計數器L放電,使計數器動作。放電計數器的元件均固定在密封的鋁盒中,高壓進線端裝有瓷絕緣子,地線接在計數器的安裝螺釘上。[1]JSY-8型編輯JSY-8型放電計數器是對過電壓保護器工作狀況進行實時及累計計數的裝置,通過它可以詳細監視及所保護線路的狀況,預知事故前異常情況,達到分析異常動
作原因,事故發生的作用。數據采集JSY-8型過電壓放電記錄儀采用自行設計的高速率數據處理單元,抗干擾能力強,軟件數字濾波調理電路,可以實時準確記錄過電壓保護器三相之間動作次數。附帶快速,分相累計顯示歷史動作次數。數據顯示JSY-8型過電壓放電記錄儀采用STN點陣式液晶顯示,清晰明了,外觀美觀。產品結構JSY-8型過電壓放電記錄儀為分體結構,數據采集、數據處理及顯示為兩分體,通過RJ45接口用網
線相連接,根據現場需要,可以任意拆分,數據處理及顯示單元拆分后在柜體上安裝簡便,只須三個螺絲。產品安裝JSY-8型過電壓放電記錄儀依結構設計,在本體上面安裝極其簡單,不用動任何結構,只須解開四個接線頭。毋庸質疑,可以在任何已經運行的過電壓保護裝置上加裝此型號放電計數器。產品運行過電壓動作計數器產品為無源設計,無須外接電源,由于軟件設計采用了實時省電模式,本體附帶高性能電池可以使用三年,電池倉更換電
池簡單方便。技術標準編輯滿足技術標準:GB6261-85《靜態繼電器及保護裝置的電氣干擾實驗》1、過電壓動作計數器適用范圍10KV及以下系統戶內相間距為85及131型保護器配套用2、上圖標注方法(見下表)適用系統上圖標注說明10KV及以下系統JSY-Ⅲ(3.8、7.6、12.7)85相間距85mmJSY-Ⅲ(3.8、7.6、12.7)131相間距131mm3、JSY-III型過電壓放電記錄儀提供兩
種安裝方式(1)本體安裝記錄儀的顯示部分可掛裝在保護器上,不需要考慮其他問題。(2)柜門安裝記錄儀的顯示部分安裝在柜門上,因此要考慮保護器到記錄儀顯示部分的號線長度和柜門的開孔位置和尺寸,如下圖所示。注:虛線框為記錄儀顯示部分的外形尺寸,此圖為柜門正面圖。運行與維護編輯1、放電計數器可用于戶內、戶外,但使用時應考慮下列因素:(1)應根據配套的閥型避雷器和所保護的電氣設備考慮使用的型號。(2)按生
產廣家允許使用的海拔高度使用。
與瓷套式避雷器不同,它是懸掛在空中的,必須采用三維電場、用有限元法計算其電位分布[5]。由于在結構上不能采用外并電容的均壓措施。避雷器高度超過5m時,如不采取措施,其電位分布不均勻系數將達1.2,荷電率達98%。改善電位分布
的設計,并通過改變均壓環的數量、大小、放置位置及深度等措施使500 kV無間隙線路避雷器(5.4m高)電位分布不均勻系數限制在10.4 %以下[5],詳在避雷器整體模壓注射硅橡膠過程中,避雷器各部分均處于受熱狀態(100℃以上)。當模壓硫化完成(即避雷器密封完成),冷卻后內部將形成低氣壓。由“巴申曲線”可知,此時電阻片沿面閃絡電壓大為下降,有可能在較低電壓下損壞避雷器。這是生產廠家容易忽略的工藝技
術問題。 (8)影響間隙放電穩定性的因素 間隙放電電壓的穩定性是避雷器保護性能的標準,棒-棒純空氣間隙與環-環帶絕緣子支撐間隙放電特性本身存在差異。前者是極不均勻電場,后者是稍不均勻電場;前者放電電壓稍低、分散性小,后者不僅分散性大,且受絕緣子污穢性能影響明顯,當污穢引起漏電流且達到一定值時,它與避雷器本體漏電流形成一個“分壓器”,明顯地改變了整個避雷器電位分布,提高了避雷器放電電壓值
,這是設計者必須給予充分考慮的。 與瓷外套避雷器不同,復合外套避雷器的外套采用有機高分子材料,它必須進行許多驗證其特性的試驗[6],如耐天侯試驗、耐電蝕試驗、耐鹽霧試驗等。這些試驗的要求及試驗方法大部分都已體現在IEC新版本的標準中。 (1)復合外套起痕和電蝕試驗 按比例制作了避雷器比例元件。霧室溫度20~25℃,鹽霧中NaCl含量為9.8kg/m3,以3.9L/ m3·h速度噴
向比例元件。同時將等比例持續運行電壓Uc施加于比例元件上,持續時間1000h。試驗期間無過流中斷,比例元件復合外套無起痕、裂縫和樹枝狀裂紋產生,傘裙未擊穿。 (2)熱機試驗及沸水煮試驗 該項試驗用于驗證避雷器在冷熱、機械力共同作用下法蘭與環氧玻璃纖維布筒結合部分粘合劑的性能,該項試驗分兩步進行: 1)比例元件在下列條件同時作用下進行試驗:①2次(-35±5)℃ ~(50±5)℃冷
熱循環,高低溫度至少保持8h,每一循環持續24h;②給比例元件施加50%額定拉伸負荷的負荷力。 2)比例元件在0.1% NaCl的溶液中沸煮42h后,立即放進環境溫度的水溶液中浸泡24h,取出后在環境溫度空氣中靜放24h,直到表面干燥。 (3)爬電比距的選擇 硅橡膠的復合外套的耐污穢性能比瓷套高出66%。這是由硅橡膠的憎水性所決定的,憎水性來自硅橡膠分子中具有排斥水分子天性的。試
驗結果表明: 1)復合外套耐污穢性能遠高于瓷套,但尚未取得定量的結論。