產品詳細介紹
并通過模擬滅弧室真空測量實驗對分析結果進行驗證,借此探索出真空斷路器滅弧室內真空度與滅弧室外電場電位間的對應關系,為實現真空斷路器高真空度在線監測和狀態評估提供參考。目前真空斷路器憑借著優越的性能而在中壓領域得到廣泛普及,并且正在不斷地向低壓領域和高壓領域進軍,而真空滅弧室又被視為真空斷路器的核心部件,因此真空滅弧
室的研制和開發被學者們給予高度的重視。隨著當今大氣環境質量問題越來越引起人們的高度重視,真空斷路器在未來完全替代SF6 斷路器將成為發展的必然趨勢。真空滅弧室對電弧的控制是通過電流流過觸頭時產生磁場來實現的,不同結構的觸頭可以產生不同方向的磁場。一種是產生橫向磁場并施加在真空電弧上來驅使集聚型電弧在洛倫茲力的作用下在觸頭的表面以極高的速度旋轉,減小陰極斑點和陽極斑點對電極表面的燒蝕時間;另一種是產
生縱向磁場并施加在真空電弧上以減小電弧的電流密度,使真空電弧在大電流情況下仍然保持擴散形態。目前縱向磁場觸頭結構在開斷大電流的真空滅弧室中應用十分普遍,他具有結構簡單,制造及加工成本低,可靠性高等優點。 早期的縱磁觸頭結構可以產生均勻的縱向磁場,使真空電弧在電流較大的情況下仍然可以保持擴散形態,減少電弧集聚導致觸頭燒蝕的幾率,但是隨著開斷電流的繼續增大,觸頭產生的縱向磁場不能有效的控制
真空電弧形態以至于觸頭表面仍然會出現較為嚴重的燒蝕情況。鐵芯的加入大大的提高了縱向磁場的強度,使同樣結構的觸頭可以產生更強的縱向磁場,從而有效的控制了真空電弧形態,提高了真空滅弧室的可靠性。然而鐵芯的加入在提高縱向磁場強度的同時也帶來了一些負面的影響,在電流過零時磁場不能迅速消退,即電流過零時帶鐵芯的觸頭結構較不帶鐵芯的觸頭結構剩余磁場較大,這將抑制了觸頭間隙中等離子體的快速散去,在恢復電壓的作用
下極易發生復燃導致觸頭不能成功開斷
)磁吹斷路器。斷路時, 利用本身流過的大電流產生的電磁力將電弧迅速拉長而吸人磁性滅弧室內冷卻熄滅。高壓斷路器斷路器在電力系統中起著兩方面的作用:一是控制作用,即根據電力系統運行需要,將一部分電力設備或線路投入或退出運行;二是保護作用,即在電力設備或線路發生故障時,通過繼電保護裝置作用于斷路器,將故障部分從電力系統中迅速切除,保證電力系統無故障部分的正常運行。高壓斷路器的類型很多,但就其結構來講,都是由開斷元件、支撐絕緣件、傳動元件、基座及操動機構五個基本部分組成。開斷元件是斷路器的核心元件,控制、保護等方面的任務都需由它來完成。其他組成部分都是配合開斷元件,為完成上述任務而設置的。斷路器按其所采用的滅弧介質,可分為下列幾種類型:(1)油斷路器:采用變壓器油作滅弧介質的斷路器,稱 為油斷路器,如斷路器的油還兼作開斷后的絕緣和帶電部分與接地外殼之間的絕緣介質,稱為多油斷路器;油僅作為滅弧介質和觸頭開斷后的絕緣介質,而帶電部分對地之間的絕緣介質采用瓷或其他介質的,稱為少油斷路器。主要用在不需頻繁操作及不要求高速開斷的各級電壓電網中。(2)六氟化硫(SF6)斷路器:采用具有優良滅弧性能和絕緣性能的SF6氣體作為滅弧介質的斷路器,稱為SF6斷路器,在電力系統中廣泛應用。適用于頻繁操作及要求高速開斷的場合,在我國在7.2—40.5選用SF6斷路器,特別是126KV以上幾乎全部選用SF6斷路器。但不適用于高海拔地區。(3)真空斷路器:利用真空的高介質強度來滅弧的斷路器,稱為真空斷路器,現已大量應用在7.2—40.5KV電壓等級的供(配)電網絡上也主要用于頻繁操作及要求高速開斷的場合,但在海邊地區使用時,應注意防凝露,因為會使斷路器滅弧室滅弧能力下降。
其它部件基座、絕緣支撐件、絕緣子等特點編輯①觸頭開距小,10KV觸頭開距只有10mm左右,操作機構的操作功就小,機械部分行程小,其機械壽命就長。②燃弧時間短,且與開關電流大小無關,一般只有半周波。③熄弧后觸頭間隙介質恢復速度快,對開斷近區故障性能較好。④由于疏通在開斷電流時磨損量較小,所以觸頭的電氣壽命長,滿容量開斷達30-50次,額定電流開斷達5000次以上,噪音小適于頻繁操作。⑤體積小、重量輕。⑥適用于開斷容性負荷電流。由于其優點很多,所以廣泛應用于變電站中,目前型號主要有:ZN12-10型、ZN28A-10型、ZN65A-12型、ZN12A-12型、VS1型、ZN30型等。 [2] 具體介紹真空斷路器技術標準真空斷路器在我國近十年來得到了蓬勃的發展。產品從過去的ZN1~ZN5幾個品種發展到數十多個型號、品種,額定電流達到5000A,開斷電流達到50kA的較好水平,并已發展到電壓達35kV等級。80年代以前,真空斷路器處于發展的起步階段,技術上在不斷摸索,還不能制定技術標準,直到1985年后才制定相關的產品標準。國內主要依據標準:JP3855-96《3.6~40.5kV交流高壓真空斷路器通用技術條件》DL403-91《10~35kV戶內高壓斷路器訂貨技術條件》這里需要說明:IEC標準中并無與我國JB3855相對應的專用標準,只是套用《IEC56交流高壓斷路器》。因此,我國真空斷路器的標準至少在下列幾個方面高于或嚴于IEC標準:(1) 絕緣水平: 試驗電壓 IEC 中國1min工頻耐壓(kV) 28 42(極間、極對地)48(斷口間)1.2/50沖擊耐壓(kV) 75 75(極間、極對地)84(斷口間)(2)電壽命試驗結束后真空滅弧室斷口的耐壓水平:IEC56中無規定。我國JB3855一96規定為:完成電壽命次數試驗后的真空斷路器,其斷口間絕緣能力應不低于初始絕緣水平的80%,即工頻1min33.6kV和沖擊60kV。(3)觸頭合閘跳時間:IEC無規定,而我國規定要求不大于2ms。(4)溫升試驗的試驗電流:IEC標準中,試驗電流就等于產品的額定電流。我國DL403-91中規定試驗電流為產品額定電流的110%。2.真空斷路器的主要技術參數 真空斷路器的參數,大致可劃分為選用參數和運行參數兩個方面。前者供用戶設計選型時使用;后者則是斷路器本身的機械
因此如何合理的設置鐵芯以及如何合理的設計鐵芯結構成為提高真空滅弧室可靠性的關鍵。針對杯狀縱磁真空滅弧室觸頭,本文設計了兩種不同結構的鐵芯,一種是結構為環狀的鐵芯,為了減小渦流的影響,在環形鐵芯上開一個間隙為1 mm 的斷口;另一種結構為圓周方向布置的柱狀鐵芯,柱狀鐵芯相互不接觸,因此可以更好的減小渦流的影響。采用有限元分析方法對比分析了兩種不同結構鐵
芯對縱向磁場和剩余磁場以及磁場滯后時間的影響。 觸頭結構模型 文中仿真所采用的兩種不同鐵芯結構的觸頭模型如圖1 所示,觸頭杯均有4 個杯指,為了防止觸頭片上產生渦流,對應的在觸頭片上開有四個周向均勻布置的徑向直槽。觸頭外徑尺寸為78 mm,壁厚11 mm,弧柱直徑與觸頭外徑尺寸相同,柱狀鐵芯12 個,仿真模型中觸頭開距為10 mm,杯座材料為無氧銅,支撐盤材料為不銹鋼,觸頭片材觸頭在高真空中分離時,其電弧表現形式與外觀特性都與在空氣中的情形有較大區別。真空斷路器的擊穿機理目前主要有場致發射、粒撞擊和粒子交換
三種假說,在短間隙真空斷路器的相關研究中,通常由場致發射效應占主導。在觸頭斷開時刻,整個陰極表面會產生金屬蒸氣。理論上是由于觸頭分開瞬間,電流集中在觸頭表面某點上,導致金屬橋熔化且部分金屬原子發生電離。隨著觸頭開距的增大,場致發射與間隙擊穿增強,觸頭表面金屬凸點不斷溶化并向觸頭間隙補充金屬粒子。此時陰極斑點會在陰極表面形成,并有更多的高能等離子體形成并擴散至間隙內。電弧引燃后,充滿等離子體的電極間
隙變成良好導體,同時陽極開始向電弧提供粒子。在縱向磁場作用下,電弧等離子體由觸頭中心向周圍擴散,此過程會維持一段時間。對于交流真空斷路器而言,電流到達峰值后會逐漸減小,兩觸頭向等離子體提供的粒子同樣減少,此時電極間隙內主要為弧后殘存粒子,伴隨著觸頭完全斷開,殘存粒子逐漸擴散至消失,斷路器完成開斷。 真空電弧等離子體的產生過程,可以表現為觸頭開距增大、觸頭表面金屬蒸發,伴隨場致發射效應和金
屬電離,由于兩極電子、金屬離子的不斷補充,終形成電弧。在電弧等離子體的研究方面,王景、武建文等運用連續光譜法分析了電子溫度和電子密度,并討論了中頻情況下,電弧過渡及擴散兩種形態。胡上茂、姚學玲等利用RC 阻容式電荷收集器,對初始等離子體的觸發特性進行了研究。舒勝文、黃道春等通過對真空斷路器開斷過程的再研究,提出數值方針結合實驗的方法,給出開斷過程不同階段所需的數值仿真方法及關注點。趙子玉等通過C
CD 攝像技術,分析了真空電弧的重燃及抑制措施