16mn圓鋼又名Q345B圓鋼,16Mn低合金圓鋼表面上的氧化鐵皮(FeO、Fe3O4、Fe2O3)都是不溶解于水的氧化物,當把它們浸泡在酸液里時,這些氧化物就分別與酸發生一系列化學反應 。 16mn圓鋼化學成分含量 c:0.13% si:0.20% mn:1.27% p:0.11% s:0.09% cu:0.3 % ni:0.3 % cr:0.15% 性能 q345是一種鋼材的材質。它是低合金鋼(c<0.2%),綜合機能好,低溫機能好, 冷沖壓機能,焊接機能和可切削機能好°廣泛應用于橋梁、車輛、船舶、建筑、 壓力容器等。q代表的是這種材質的屈服,后面的345,就是指這種材質的屈服 值,在345左右。并會跟著材質的厚度的增加而使其屈服值減小。

(1)50噸及以上UHP電爐冶煉→60噸及以上LF爐精煉→60噸及以上VD爐真空處理→合金圓鋼鋼方坯或矩形坯連鑄(260mm×300mm、180mm×220mm)→緩冷或熱送→軋材→精整→檢驗入庫。 (2)90噸及以上轉爐冶煉→100噸及以上LF爐精煉→100噸及以上RH爐真空處理→合金鋼方坯或矩形坯連鑄→(如:320mm×340mm、240mm×240mm)緩冷或熱送→軋材→精整→檢驗入庫。 [2] 應用領域編輯 語音 軸承鋼圓鋼是用于制造滾動軸承的滾珠,滾柱和套筒等的鋼種,也可用于制作精密量具,冷沖模,機床絲杠、如沖模、量具、絲錐及柴油機油泵的精密配件。軸承鋼是用來制造滾珠、滾柱和軸承套圈的鋼。

對圓鋼加熱和冷卻時相變的影響 鋼加熱時的主要固態相變是非奧氏體相向奧氏體相的轉變,即奧氏體化的過程。整個過程都和碳的擴散有關。合金元素中,非碳化物形成元素降低碳在奧氏體中的能,增加奧氏形成的速度;而強碳化物形成元素強烈妨礙碳在鋼中的擴散,顯著減慢奧氏體化的過程。 鋼冷卻時的相變是指過冷奧氏體的分解,包括珠光體轉變(共析分解)、貝氏體相變及馬氏體相變。僅舉合金元素對過冷奧氏體等溫轉變曲線的影響為例,大多數合金元素,除鈷和鋁外,均起減緩奧氏體等溫分解的作用,但各類元素所起的作用有所不同。不形成碳化物的(如硅、磷、鎳、銅)和少量的碳化物形成元素(如釩、鈦、鉬、鎢),對奧氏體到向珠光體的轉變和向貝氏體的轉變的影響差異不大,因而使轉變曲線向右推移。 碳化物形成元素(如釩、鈦、鉻、鉬、鎢)如果含量較多,將使奧氏體向珠光體的轉變顯著推遲,但對奧氏體向貝氏體的轉變的推遲并不顯著,因而使這兩種轉變的等溫轉變曲線從“鼻子”處分離,而形成兩個 C形。 [3] 對鋼的晶粒度和淬透性的影響 影響奧氏體晶粒度的因素很多。鋼的脫氧和合金化情況均與“奧氏體本質晶粒度”有關。一般來說一些不形成碳化物的元素如鎳、硅、銅、鈷等阻止奧氏體晶粒長大的作用較弱而錳、磷則有促進晶粒長大的傾向。碳化物形成元素如鎢、鉬、鉻等,對阻止奧氏體晶粒長大起中等作用。強碳化物形成元素如釩、鈦、鈮、鋯等,強烈地阻止奧氏體晶粒長大,起細化晶粒作用。鋁雖然屬于不形成碳化物元素,但卻是細化晶粒和控制晶粒開始粗化溫度的常用的元素。 鋼的淬透性(見淬火)高低主要取決于化學成分和晶粒度。除鈷和鋁等元素外,大部分合金元素溶入固溶體后都不同程度地抑制過冷奧氏體向珠光體和貝氏體的相變,增加獲得馬氏體組織的數量,即提高鋼的淬透性。

合金鋼圓鋼 alloy steel 鋼里除鐵、碳外,加入其他的合金元素,就叫合金鋼。 在普通碳素鋼基礎上添加適量的一種或多種合金元素而構成的鐵碳合金。根據添加元素的不同,并采取適當的加工工藝,可獲得高強度、高韌性、耐磨、耐腐蝕、耐低溫、耐高溫、無磁性等特殊性能。 合金鋼已有一百多年的歷史了。工業上較多地使用合金鋼材大約是在19世紀后半期。 1868年英國人馬希特(R.F.Mushet)發明了成分為2.5%Mn-7%W的自硬鋼,將切削速度提高到5米/分。 1870年在美國用鉻鋼(1.5~2.0%Cr)在密西西比河上建造了跨度為 158.5米的大橋;稍后一些工業 改用鎳鋼(3.5%Ni)建造大跨度的橋梁,或用于修造軍艦。 1901年在西歐出現了高碳鉻滾動軸承鋼。 1910年又發展出了18W-4Cr-1V型的高速工具鋼,進一步把切削速度提高到30米/分。 20世紀20年代以后,不銹鋼和耐熱鋼在這段期間問世了。 1920年德國人毛雷爾 (E.Maurer) 發明了18-8型不銹耐酸鋼, 1929年在美國出現了Fe-Cr-Al電阻絲。 1939年德國在動力工業開始使用奧氏體耐熱鋼。

點擊查看新弘揚特鋼有限公司的【產品相冊庫】以及我們的【產品視頻庫】