<有時鑄鐵型材的強度、硬度盡管比前者低,但仍可滿足一般機體要求,其鑄造性、減震性均佳,且便于熔煉,是應用廣的灰鑄鐵。灰鑄鐵顯組織的不同,實質上是碳在鑄鐵中存在形式的不同。灰鑄鐵中的碳有化合碳(Fe3C)和石墨碳所組成。化合碳為0.8%時,屬珠光體灰鑄鐵;化合碳小于0.8%時,屬珠光體—鐵素體灰鑄鐵;全部碳都以石墨狀態存在時,則為鐵素體灰鑄鐵。對鼓肚缺陷,在鑄鐵型材的水平連鑄過程中采用反弧度法工藝,即通過新型的石墨套與引錠裝置來實現的,通過實施反弧度法工藝,鑄鐵型材的鼓肚現象得到有效。但由于在率次實驗過程中,剛開始生產鑄鐵型材時的拉拔速度比較慢、拉拔周期較長,反弧度法工藝制各的鑄鐵型材組織更為均勻,力學性能更為優良。與實施反弧度法之前的鑄鐵型材相比,實施反弧度法之后的鑄鐵型材硬度得到提高,組織更為均勻,并且其抗拉強度指標高于鑄鐵型材標準(JBT10854-2008水平連續鑄造鑄鐵型材) 性能要求。同時,伸長率指標均超過LZQT500-7規定的指標。與拉伸性能結果類似,反弧度法試樣的抗壓強度高于未實施反弧度法試樣的抗拉強度。 基于Matlab軟件建立以鑄造工藝參數為輸入,拉坯工藝參數為輸出的控制模型。仿真實驗表明本文建立的拉坯工藝參數GA-BP神經網絡控制模型可以用于拉坯工藝參數自適應整定,所獲得拉坯工藝參數能夠用于實際生產系統,實現高質量、率的鑄鐵型材水平連鑄拉坯生產。鐵水的質量除與其成分有關聯外,還與爐料配比(生鐵用量、廢鋼用量、返回料用量、合金加入量),熔化與出爐溫度,孕育工藝等有密切關系。所謂合成鑄鐵,就是指配料中使用50%以上的廢鋼,通過增碳合成的方法制取的鑄鐵材料,因為需要較高的熔化溫度,只宜在電爐中熔煉。目前合成鑄鐵主要有合成灰鐵和球鐵。

球墨鑄鐵型材厚大部位在特定情況下易產生一種條帶狀灰斑缺陷該缺陷會顯著降低材料的硬度.通過掃描電鏡(SEM)和能譜分析(EDS)等方法對異常灰斑的金相組織和區成分進行了分析.結果 表明:低于4.3%的碳當量、成分偏析和厚大且相對封閉的鑄鐵型材結構是形成這一缺陷的主要原因.在這些條件下易形成緩冷枝晶Si元素在緩慢冷卻的奧氏體支晶內部偏析并富集促進形成鐵素體;而Mn元素和Cu元素在枝晶附近及外部偏析并富集促進珠光體形成.兩種基體組織的硬度差使加工后出現很大的色差形成宏觀的灰斑形貌.球墨鑄鐵由于其力學性能優良,成本低廉,在生產上得到了廣泛的應用。 對出現在鑄鐵型材內部的夾雜缺陷,進行了地研究分析,明確了夾雜物的分布規律、元素組成、來源及形成原因,并就如何控制該缺陷的產生給出了相關的建議。對大斷面型材表面出現的疤皮缺陷,分析了形成原因,討論了影響其形成的因素,并提出了能有效疤皮缺陷的措施。優化設計后得到的鑄鐵型材新生產線,能夠滿足 尺寸為400mm的鑄鐵型材的生產,且生產鑄鐵型材的工序簡化,各設備的結構組成更為簡單合理.鑄鐵型材中的夾雜物主要聚集分布在其中心線上方約3/4半徑處,對于鑄鐵型材表面存在的疤皮缺陷,生產實踐證明,采取提高鐵水溫度、保證鐵水純凈度、適當提高拉拔速度、改進爐膛底部結構及阻斷結晶器兩段石墨套間橫向傳熱的舉措能夠有效地。 所獲得拉坯工藝參數能夠用于實際生產系統,實現高質量、率的鑄鐵型材水平連鑄拉坯生產。這些機械構件被主要應用于一些受力復雜,強度、韌性、耐磨性要求高的零件中,如柴油機、汽車及拖拉機的曲軸、凸輪軸、汽缸蓋、中壓閥門,汽車及拖拉機的某些齒輪以及農機、農具等零件,這就要求它們有高的強度、塑性、韌性、耐磨性、耐機械沖擊、耐高溫或低溫、耐腐蝕性以及良好的尺寸穩定性等。球墨鑄鐵大量取代了可鍛鑄鐵、鑄鋼和灰口鑄鐵,已經發展成為一種重要的工程材料。


