更新時間:2025-01-03 02:18:15 瀏覽次數:6 公司名稱: 眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司
產品參數 | |
---|---|
產品價格 | 439 |
發貨期限 | 電議 |
供貨總量 | 電議 |
運費說明 | 電議 |
材質 | 65錳鋼板 |
規格 | 1500*4000 |
品牌 | 河鋼、敬業 |
切割方式 | 激光加工 |
狀態 | 冷軋、熱軋、淬火 |
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司在激烈的市場競爭中,能實現穩步發展,靠的是以市場為導向,以質量為生命,以技術創新為依托。研究 遼寧丹東16錳鋼板市場的同時,不忘抓質量,并以不斷的資金投入,確保技改項目的成功實施,從而提高了 遼寧丹東16錳鋼板產品質量,擴大了市場份額。市場經濟不同情弱者,但也不會傾情于魯莽,面對企業的生存競爭,更多的是依靠理性和智慧。以 遼寧丹東16錳鋼板產品質量贏得市場。
傳統高65mn錳鋼板(Hadfield鋼)在室溫下能獲得單相奧氏體,具有優良的加工硬化能力和抗沖擊能力,因此廣泛用作沖擊載荷下的耐磨材料。然而較低的屈服強度和初始硬度,導致材料在低沖擊載荷下不能完全發揮其耐磨性就發生塑性變形,降低了使用壽命。本文設計出一種輕質超高錳鋼(Fe-31.6Mn-8.8A1-1.38C),具有低密度、高屈服強度、高初始硬度、良好沖擊韌性等特點,適用于低沖擊載荷下的磨損條件。通過研究時效處理后的相轉變、壓縮變形、沖擊磨損分析了實驗鋼的強化機理和磨損機理。
實驗鋼經1050℃保溫1.5h水韌處理后獲得單相奧氏體,65錳冷軋鋼板時效后奧氏體基體會彌散析出納米級別的κ’-碳化物,有助于屈服強度和初始硬度。在550℃時效2h綜合力學性能65錳鋼板佳,與僅水韌處理相比屈服強度提高107.4%,初始硬度提高28.7%,其抗拉強度為1041.7 MPa、屈服強度為1002.7 MPa、斷后伸長率為17.6%、沖擊韌性(V型缺口)為62 J/cm2和硬度為268.5 HB。隨著時效溫度升高(550℃~900℃)相轉變的順序為:κ’→納米-κ’+β-Mn→亞米-κ’+β-Mn+α→納米-κ’。其中四種類型的κ相析出涉及尺寸、形貌和分布被總結,包括晶內型:納米-κ’(<50nm),亞米-κ’(>100nm)。
晶間型:κ*(~1μm)。以及片層狀κ,存在α+κ群落中。在550℃時效下,納米-κ’能促進β-Mn沿晶界析出,不需要借助α相;而在700℃和800℃長時間時效下,由于α相的大量析出,其形成主要借助于γ→α反應。通過納米壓痕測試,獲得了不同時效溫度下基體與析出相的納米硬度。計算得到理論層錯能(SFE)為82.3 mJ/m2,由于平面滑移軟化效應,變形模式以位錯平面滑動為主,隨著變形量的增加,主要的亞結構演變順序為:平面位錯隊列→平面位錯配置(偶極子和Lomer-Cottrell鎖)→泰勒晶格→帶。65錳冷軋鋼板本研究利用壓縮變形,觀察到了高層錯能下被抑制的形變孿晶以及一種多晶結構。通過分析理論臨界孿生應力(σT),當外加應力大于σT,形變孿晶出現。多晶結構內部以位錯纏結為主,通過波狀滑移形成了位錯胞。并提出了多效協同的強化機理:1)位錯平面滑移導致滑移帶細化和帶形成,2)形變孿晶,3)多晶結構。這些形變亞結構的出現共同限制了位錯運動,促進基體內位錯密度的不均勻,從而增強了應變硬化。低沖擊載荷(0.5 J)下,時效后實驗65mn錳鋼板耐磨性更好,磨損百分比更低(0.55%~0.57%)。
傳統高錳鋼在中低載荷工況下不具有優勢,在其基礎上通過降低或增加碳錳元素含量研發出中錳和超65錳鋼板高錳鋼,在一定程度上彌補了其應用中存在的不足。
本文對比研究了Mn8、Mn15及Mn18三種錳鋼的滑動和沖擊磨料磨損性能,分析了磨損機理。同時模擬礦井淋水腐蝕環境,探討了三種錳鋼的電化學腐蝕性能,論文得到以下主要結論:酸性礦井淋水腐蝕條件下,三種錳鋼表現出更負的腐蝕電位,酸性工況下耐腐蝕性能弱于堿性和中性腐蝕環境。酸、中、堿性礦井淋水腐蝕環境中,Mn8鋼的開路電位正(65mn錳冷軋鋼板),極化曲線外推擬合腐蝕電壓 ,腐蝕電流小,且容抗弧半徑小,其耐腐蝕性能優于Mn15和Mn18耐磨鋼。滑動磨損實驗表明,三種錳鋼的摩擦系數均呈現先快速升高,后下降到一定的范圍趨于平穩的變化趨勢,低載平均摩擦系數高于高載。相同磨損工況條件下,Mn8均具有 磨損失重,其抗滑動磨料磨損性能優于Mn15和Mn18耐磨鋼。
三種耐磨鋼磨損層硬度分布均呈現梯度變化特征,Mn8磨損亞表層(50mm處)65錳鋼板硬度達到550HV,Mn15和Mn18分別為450HV和510HV,Mn8的加工硬化效果佳,Mn18則優于Mn15。三種耐磨鋼干摩擦磨損機理主要表現為粘著磨損,伴有局部區域的疲勞剝落破壞,石英砂磨料磨損機理主要為磨粒磨損,表現形式為寬且深的犁溝和較大區域的疲勞剝落。沖擊磨料磨損實驗表明,隨沖擊功的增大,三種錳鋼的加工硬化能力均提高,磨損失重也明顯降低。1.5J沖擊功時,Mn18的磨損失重低于Mn8和Mn15;3.5J沖擊功時,Mn8具有 的磨損失重。Mn8和Mn18亞表層組織具有較高密度的孿晶,亞表層(50mm處)硬度分別達到50HRC和48HRC,其加工硬化效果明顯優于Mn15,加工硬化層深度超過1.5mm。三種錳鋼磨損形式主要表現為鑿削磨損和不同程度疲勞剝落磨損。
65錳鋼板Mn8、Mn15磨損層亞結構主要為位錯、孿晶及馬氏體,其耐磨強化機制為馬氏體相變復合強化機制。Mn18磨損層亞結構出現大量位錯、孿晶外,未發現馬氏體相變,但出現Fe-Mn-C原子團偏聚區,其強化機制是通過位錯、孿晶和Fe-Mn-C原子團強化