42crmo鋼板耐磨板65錳高標準高品質
更新時間:2025-01-17 05:54:10 瀏覽次數:5 公司名稱: 眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司
產品參數 | |
---|---|
產品價格 | 385 |
發貨期限 | 電議 |
供貨總量 | 電議 |
運費說明 | 電議 |
材質 | 42crmo鋼板 |
規格 | 2200*9600 |
加工方式 | 激光切割 |
地址 | 山東 |
運輸方式 | 專線物流 |
對于大傾覆力矩、重載疲勞和高沖擊高磨損的軸承材料,通常采用感應淬火進行表面強化,但存在軟帶和變形大等問題。而使用激光淬火硬化層深度在1 mm以內,42crmo鋼板且橫截面硬化層為"月牙形",試樣表面各點硬化層分布不均,較淺處易提前發生損壞。
為解決以上問題,利用COMSOL軟件模擬激光深層淬火過程溫度場時空分布,與常規激光淬火不同,激光深層淬火采用了寬光斑、低速掃描,且輔助用于提高吸光率的涂料,在軟件中設定不同激光功率、掃描速度和光斑尺寸,分析得到不同工藝參數下的溫度場分布、硬化層形貌和特征尺寸,并在模擬指導下進行實驗得到深層硬化層,并探究光斑尺寸對硬化層深度、寬度、均勻性的影響。模擬結果表明,選擇適當的激光功率密度和掃描速度進行激光淬火溫度場的模擬,可以得到3.6 mm深的硬化層。以此進行光纖耦合半導體激光器淬火實驗,實驗所得有效硬化層深度為3.7 mm,硬化層平均硬度為774 HV0.3。42crmo鋼板將實驗所得硬化層形貌和模擬結果進行對比,平均誤差為6.5%。模擬結果還表明,在激光功率、光斑面積和掃描速度不變時,改變光斑的寬度,硬化層的寬度與光斑的寬度成正比例,硬化層的深度隨光斑寬度增加先增加后減小。隨著光斑寬度增加,硬化層分布更加均勻。
利用金相顯鏡、洛氏硬度計和掃描電鏡,對經過預備熱處理(退火、淬火、調質)+亞溫淬火+高溫回火處理(又稱臨界區淬火+回火)后的42CrMo鋼的組織、沖擊性能以及斷口形貌進行了觀察和分析。結果表明,預備熱處理為退火處理時,亞溫處理后殘留的鐵素體粗大不均;且在回火索氏體之間分布不均勻;預備熱處理為淬火處理和調質處理時,殘留的鐵素體形態細小,且與回火索氏體均勻分布。采用不同預備熱處理時,亞溫處理后的硬度差別很小。亞溫處理后42CrMo鋼的沖擊性能均高于常規調質處理后的沖擊性能;預備熱處理為調質處理時,亞溫處理后的沖擊功 ,從其斷口形貌中可以看出,其起裂區和裂紋纖維擴展區所占比例較退火處理和淬火處理時要大。因此,調質處理更適合作為42CrMo鋼的預備處理。
42crmo鋼板先進高強度鋼憑借其優異的力學性能、良好的成型性能以及較低的制造成本,在汽車制造、軍工以及航天等領域有著十分廣闊的應用前景。縱觀 代到第三代先進高強鋼的發展歷程,以“復相、多尺度”為基礎的調控理論研制具有“亞穩相、超細晶基體”等特點的超級鋼逐漸受到青睞。現今,在輕量化和智能制造等一些列工業背景下,如何更快速且低能耗地開發更輕質、高性能的鋼材也成為了材料加工領域的研究熱點。
高能瞬時電脈沖處理,自電致塑性效應被發現以來,就備受材料研究人員的關注。42crmo鋼板近些年來,伴隨著對非平衡固態相變機理、多物理場作用下觀結構的演變規律以及相應伴生現象的深入研究,電致強化這一概念也逐漸受到重視,電脈沖處理在鋼鐵材料的強韌化等方面也實現了一定程度的工程化應用。此外,基于電子風沖擊、電遷移效應對快速相變以及再結晶的影響,采用脈沖電流對鋼材進行細化及強韌化處理完全符合第三代先進高強鋼的開發宗旨和組織性能要求特點。但以往的工作多集中在對電脈沖處理誘發的組織細化以及強塑性同時等方面的淺層研究,而缺乏對位錯組態、界面遷移、晶體取向以及析出行為等方向的實質性深入探索。因此,研究脈沖電流作用下鋼材的亞結構演化及強韌化機理,對進一步豐富和完善鋼的非平衡相變理論以及開發新型的強韌化工藝有著重要的實際意義。
本文采用高能瞬時電脈沖處理對兩種強化類型完全不同的鋼材(42CrMo鋼板及T250鋼)進行了增強、增韌處理。同時,結合相應的傳統熱處理,規律性地研究了脈沖電流對不同鋼材顯組織及亞結構的影響、定量地分析了脈沖電流作用下鋼材的強韌化機理、歸納概括了不同處理方式對鋼材具體作用機制的差異。
42CrMo鋼板含有Cr、Mo等多種合金化元素,具有優良的綜合力學性能,既具有較高的強度,又具有較好的塑性,在鍛件,特別是大型鍛件領域,有廣泛的應用。本文采用計算機模擬與實驗相結合的方法,構建了 42CrMo鋼較準確的本構模型和材料性能數據庫,并開展了材料變形和熱處理淬火過程的計算機模擬和實驗,模擬結果與實驗結果吻合較好。
通過熱壓縮實驗,測定了 42CrMo鋼板在不同溫度和應變速率下的應力-應變數據,構建了改進的Johnson-Cook本構模型和應變補償的Arrhenius本構模型,得到了較大應變范圍內較準確的42CrMo鋼的本構方程。擬合了手冊中標準的42CrMo鋼的TTT曲線,獲得了較準確的TTT曲線數據。此外還構建了包含熱導率、比熱容、楊氏模量、泊松比、相變潛熱、膨脹系數等較完善、準確的42CrMo鋼數據庫。以構建的數據庫為基礎,通過DEFORM軟件模擬了 42CrMo鋼在變形溫度為1123 K、應變速率為0.01 s-1條件下的熱壓縮過程,將模擬結果中壓縮后試樣的尺寸數據、Top Die載荷-行程曲線以及計算得出的應力-應變曲線分別與相同實驗條件下實測結果進行對比。結果顯示,載荷-行程曲線和應力-應變曲線在數值大小和變化趨勢上與實驗結果吻合較好,表明選用的應變補償的Arrhenius本構模型能夠比較準確地描述42crmo鋼板的變形行為。
通過DEFORM軟件模擬了 42CrMo鋼板在1123 K時的末端淬火過程,結果顯示試樣末端與水的換熱程度劇烈,溫度迅速下降,形成大量馬氏體組織,隨著遠離淬火末端,馬氏體含量逐漸降低,硬度也隨之降低。同時進行了同條件的末端淬火實驗,對淬火后試樣的軸向硬度分布進行了測量,并觀察不同位置組織組成,實驗結果與模擬結果基本一致,這表明文中構建的42CrMo鋼數值模擬數據庫較為準確。可以在此基礎上進行不同幾何形狀、不同變形條件、不同熱處理過程的數值模擬,為實際生產過程的模擬與優化打下了良好的基礎。
為了提高汽車傳動件常用材料42CrMo鋼板的耐腐蝕性能,對42CrMo鋼進行錳系磷化處理,并考察了表面調整和磷化液溫度對磷化膜耐腐蝕性能的影響。
結果表明,表面調整后形成的磷化膜結晶細致均勻,晶粒大小較均一,較未表面調整直接形成的磷化膜的耐腐蝕性能有一定的提高;磷化液溫度對磷化膜的觀形貌、成分和耐腐蝕性能有較大影響,隨著磷化液溫度從78℃升高到94℃,晶粒先細化后粗化,磷化膜致密性先變好后變差;磷化膜中Mn元素質量分數先升高后降低,Fe元素質量分數先降低后升高,而P和O元素質量分數變化不大;磷化膜的腐蝕電位先正移后負移,腐蝕電流密度先降低后升高;表面調整后在86℃下形成的磷化膜具有良好的耐腐蝕性能,其腐蝕電位和腐蝕電流密度分別為-527.46 mV、1.997×10-5A/cm2,對42CrMo鋼的保護效率為73.2%,能有效提高42CrMo鋼板的耐腐蝕性能。
42CrMo鋼板經過調質處理(淬火+回火)可以獲得良好的強度和韌性,因此被作為制造大規格螺栓等零部件的常用材料。由于此類零部件應用環境的影響,對于其制造材料不僅要求具備良好的強度、韌性、延展性等綜合性能,還要求高的低溫沖擊性能,特別是大規格的螺栓(42mm≤Φ≤64mm),其截面尺寸的增加導致淬火后材料心部除馬氏體組織產生外,作為不完全淬火組織的貝氏體組織比例增加,難以實現截面性能的均勻性和保證心部的低溫沖擊性能。因此為保證大規格螺栓的服役性能,要求材料要具有良好的淬透性,即淬火后心部馬氏體組織達到90%以上。雖然通過控制生產工藝可以改善材料的淬透性,但是影響材料淬透性的根本原因是材料的化學成分。本文針對大規格螺栓鋼淬透性問題,在42CrMo鋼基礎成分上配合添加元素Al、B、Ti,同時控制鋼的N含量,研究了Al添加對42CrMo鋼淬透性和淬火組織以及性能的影響,并與含B鋼進行對比,揭示Al對不同尺寸42CrMo鋼淬透性的影響規律。
具體研究內容如下:在42crmo鋼板基礎成分中配合添加Al-Ti和Al-B元素,通過末端淬火實驗和截面硬度實驗對比分析設計鋼與42CrMo鋼淬透性的差異,并通過金相顯鏡OM、掃描電鏡SEM觀察不同部位淬火后組織形貌以及回火后觀組織和斷口形貌,通過常規力學性能檢測其常溫拉伸和低溫沖擊性能,
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司是一家結集 山西長治16錳鋼板銷售、服務于一體的國內知名企業。我公司技術力量雄厚,生產設備精良,檢測手段齊全,質量管理嚴謹,我公司將以z u i可靠的產品質量、z u i優惠的產品價位、z u i完善的售后服務,z u i良好的商業信譽來贏得您對我們的信任和支持。我們竭誠歡迎新老客商蒞臨我公司實地考察、參觀指導!讓我們精誠合作,攜手同心,互惠互利,共創新的輝煌!