文字再美,也抵不過視頻中的高壓開關柜固定金具懂您所需產品真實呈現,趕快點擊觀看吧!
以下是:高壓開關柜固定金具懂您所需的圖文介紹
樊高電氣銷售部有限公司擁有一支專業的技術隊伍,并具有多年 廣西【高低壓電器】生產銷售及售后服務的經驗。我公司不斷致力于新產品的開發,在滿足客戶需求的原則和社會發展需要上,與多家 廣西【高低壓電器】廠家合作,推出質量、性能、價格公道組合的系列 廣西【高低壓電器】產品,并贏得了廣大客戶的信賴和贊許。
電容器(或直流屏供電)儲能,用電子控制。永磁機構特別適用于頻繁操作,如可達6萬~15萬次。真空斷路器觸頭的工作壓力對真空斷路器的性能有很大的影響,其壓力等于真空開關管的自閉力與觸頭彈簧力之和。斷路器觸頭的工作壓力選擇應該滿足4方面的要求:1)使真空開關管的觸頭接觸電阻保持在規定的范圍內,2)滿足動穩定試驗的要求,3)合閘彈跳,4)減小分閘彈振。由于真空斷路器在關合短路電流時,觸頭在予擊穿后要產生電弧和電動斥力,觸頭產生彈跳,機構合閘速度也慢,所以,關合短路電流是考核觸頭工作壓力是否滿足要求的苛刻的條件。日本幾家公司另辟路徑,開發出低過電壓真空斷路器。它不用加過電壓吸收裝置而用新開發出的觸頭材料。
將過電壓限制至常規值的十分之一。低過電壓觸頭材料東芝為AgWC日立為Co-Ag-Se,三菱為Cu-Cr-Bi-α,富士為CuCr+高蒸氣材料。這些公司一般做到7.2kV下20kA,只有東芝公司做到7.2kV下40kA。真空間隙中的絕緣強度不僅與間隙的大小,電場的均勻程度有關,而且受電極材料的性質及表面狀況的影響較大。真空間隙在較小的距離間隙(2—3毫米)情況下,有比高壓力空氣與SF6氣體高的絕緣特性,這就是真空斷路器的觸頭開距一般不大的原因。真空間隙中的絕緣強度不僅與間隙的大小,電場的均勻程度有關,而且受電極材料的性質及表面狀況的影響較大。真空間隙在較小的距離間隙(2—3毫米)情況下,有比高壓力空氣與SF6氣體高的絕緣。
這就是真空斷路器的觸頭開距一般不大的原因。真空斷路器合閘時間的大小,是衡量真空斷路器性能好壞的一個重要標志,其與斷路器的觸頭彈跳壓力、合閘速度、開距及真空開關管的觸頭材料等有關,同時還與開關管的結構、斷路器的結構及安裝調試有關。觸頭合閘彈跳時間越小,其性能越好,彈跳時間越長,觸頭的電磨損越嚴重,容易產生合閘過電壓,在關合短路電流或電容器時,以及行動、熱穩定試驗時將導致觸頭熔焊。另外,觸頭合閘彈跳時間越長,嚴重危害開關管的波紋管使用壽命。10kV級銅絡觸頭材料的真空斷路器合閘彈跳時間不超2ms,其他觸頭材料的真空斷路器合閘彈跳時間可以相對大一些,但是不得超過5ms。真空斷路器合閘時間的大小,是衡量真空斷路器性能好壞的一個重要。
高壓開關柜
將過電壓限制至常規值的十分之一。低過電壓觸頭材料東芝為AgWC日立為Co-Ag-Se,三菱為Cu-Cr-Bi-α,富士為CuCr+高蒸氣材料。這些公司一般做到7.2kV下20kA,只有東芝公司做到7.2kV下40kA。真空間隙中的絕緣強度不僅與間隙的大小,電場的均勻程度有關,而且受電極材料的性質及表面狀況的影響較大。真空間隙在較小的距離間隙(2—3毫米)情況下,有比高壓力空氣與SF6氣體高的絕緣特性,這就是真空斷路器的觸頭開距一般不大的原因。真空間隙中的絕緣強度不僅與間隙的大小,電場的均勻程度有關,而且受電極材料的性質及表面狀況的影響較大。真空間隙在較小的距離間隙(2—3毫米)情況下,有比高壓力空氣與SF6氣體高的絕緣。
這就是真空斷路器的觸頭開距一般不大的原因。真空斷路器合閘時間的大小,是衡量真空斷路器性能好壞的一個重要標志,其與斷路器的觸頭彈跳壓力、合閘速度、開距及真空開關管的觸頭材料等有關,同時還與開關管的結構、斷路器的結構及安裝調試有關。觸頭合閘彈跳時間越小,其性能越好,彈跳時間越長,觸頭的電磨損越嚴重,容易產生合閘過電壓,在關合短路電流或電容器時,以及行動、熱穩定試驗時將導致觸頭熔焊。另外,觸頭合閘彈跳時間越長,嚴重危害開關管的波紋管使用壽命。10kV級銅絡觸頭材料的真空斷路器合閘彈跳時間不超2ms,其他觸頭材料的真空斷路器合閘彈跳時間可以相對大一些,但是不得超過5ms。真空斷路器合閘時間的大小,是衡量真空斷路器性能好壞的一個重要。
高壓開關柜
成本低廉,而且動作時間快。影響變壓器電氣性能的各種因素分析水分在變壓器油中以3種形式存在:沉積,溶解和結合,油中含水量越小,工頻擊穿電壓越高,當含水量大于200x10-6時擊穿電壓不變,因為此時多余水沉于油的底部,不會影響油試驗時的擊穿電壓值。10-6時,含水量超過飽和溶解量,水沉積到底部,油的耐壓值與飽和溶解量時的耐壓值一樣,油中含水量對油的介損指標(tgS)及固體絕緣電性能的影響也很大,隨著含水量增大,tgS值迅速上升,水分增加,油浸紙擊穿電壓值呈曲線迅速下降。當含水量為3%時,其耐電強度約下降10%,對于500kV變壓器出廠時絕緣紙含水量控制在0.5%以下,在一般情況下,變壓器運行時,油溫。
油中含水量增加而紙中含水量降低,即紙中含水向油中擴散,運行溫度降低。擴散方向相反,因此,較高油溫的變壓器在低溫環境下退出運行時或當油含水量過高退出運行時,油的含水部分向紙中擴散,另外,由于油溫降低,油中含水量大于飽和溶解量,多余的水分會從油中析出而沉于油箱底或者沉在冷卻器底部。當變壓器重新投入運行時,冷卻器底部的水會由油泵導入變壓器線圈,同時水向變壓器的高場強區移動,造成潛在危險,這種情況必須引起變壓器運行部門注意,對油的含水量必須控制在符合要求的數值之內,降低油的含水量對提高變壓器運行及減緩油老化有重要作用。為了降低油的含水量,可以采取對油進行真空加熱法處理,油溫加熱到60~70弋,抽高。
將油中的含水量降下來,純凈油的擊穿場強很高,當油中存在雜質和水分時,油的擊穿電壓明顯下降,變壓器中有大量的絕緣材料。而油中含有纖維雜質,其中含有水分的纖維更易導電,介電系數大,容易沿電場方向排列成雜質小橋,沿小橋的泄漏電流大,發熱多,易引起水分汽化,從而使氣泡擴大,擊穿就會在這些小橋和氣泡中發生,電場越均勻,雜質對擊穿電壓的影響越大。擊穿電壓的分散性也越大,在不均勻電場中,雜質對耐壓及沖擊電壓的影響較小,這是因為場強******處發生局部放電時,油發生擾動致使雜質不易形成小橋,同時,在沖擊電壓的瞬時作用下,雜質還來不及形成小橋,油中懸浮顆粒在工頻電壓作用下對其絕緣強度的影響與顆粒的數量。大小,性質。
2種加壓方法:(1)以10kV/s的速度平滑加壓,(2)分級加壓,在1min內從65%預計擊穿電壓開始以每級為3%的預計擊穿電壓值升壓,2種施加電壓方法都顯示出隨顆粒量的增加,其絕緣強度逐漸降低。由于承受電壓的時間較長,分級加壓比平滑加壓更嚴重,2種加壓方法試驗結果之差估計約為15%,目前,采用濾油機來處理油中雜質,對于500kV變壓器要采用粗過濾器和精過濾器2種過濾器來油中雜質,以確保油的耐壓水平含氣量是變壓器油的主要控制指標之。含氣量直接影響超高壓變壓器的絕緣性能,運行中變壓器油含氣量******不超過4%,500kV變壓器油含氣量控制在0.5%以內,油中正常溶解空氣量為10%11%,當油的含氣量超過飽和溶解。
氣體會從油中釋放出來。懸浮在油中,當油中存在懸浮的氣泡時,在氣體與液體的交界面,由于2者的介電系數不同,界面電場將產生畸變,且氣體的耐電強度低,會產生氣泡放電,60kV級以上變壓器要求進行真空注油和成品試驗前的靜放處理,其目的就是為了變壓器器身內部和油中氣泡。防止產品試驗時發生氣泡放電,另外,當變壓器投入運行時,油中溶入過多的氣體會逐步排出并集中到氣體繼電器中,而發生誤動作,改善電場的均勻程度可以明顯提高優質變壓器油的工頻擊穿電壓,對于含有雜質的油在沖擊電壓作用下。雜質來不及形成[小橋",改善電場的均勻程度可以提高油的耐壓程度,油中的雜質在工頻耐壓作用下聚集和排列使電場產生畸變,擊穿電壓提高不。
生產中的制造缺陷,如產品內有金屬異物,氣泡,引線屏蔽不良,導體和接地件有毛刺等。影響變壓器電場均勻程度,造成產品局部放電,耐壓擊穿,采取以下措施,如增加鐵芯屏蔽,引線屏蔽良好,油箱護管,線圈靜電板,均壓球等加大電極曲率半徑的措施,可以改善變壓器電場均勻程度,不但縮小了絕緣結構的絕緣距離。而且同時提高了產品質量,產品出廠前對產品進行吊芯檢查,變壓器內部雜質和異物,******程度保證產品清潔度,變壓器油流動時,與絕緣材料磨檫產生靜電,流速越高,電壓越高,油在變壓器中流動產生帶電的現象稱為油流帶電。油流帶電可使變壓器電場產生畸變,油流帶電電壓與試驗電壓疊加,當疊加后的電場強度超過絕緣材料的局部放電場強或者擊穿場。
將危害變壓器的運行,油流速在0.5m/s時,油流帶電所產生的局部放電脈沖開始出現。在變壓器制造中,采用******流速為0.33m/s,油流帶電對超高壓變壓器影響更大,因此,變壓器必須控制油流速度,加大油流通道的截面,降低流速,油流通道的絕緣件應倒圓角,對大容量,高電壓等級變壓器采用大流量強迫油循環冷卻器油泵。降低油流帶電電壓,防止油流帶電引起絕緣局部放電或者絕緣擊穿現象發生,為了變壓器在運行中的油流帶電,在變壓器油中添加一定比例的改性的苯丙三唑(BTA)來改善變壓器油質,實驗結果表明,BTA不僅可以變壓器油的流動帶電。而且對變壓器油也無影響,用這種添加劑是提高變壓器運行度的有效措施之。
部分變壓器廠已開始在500kV變壓器中采用,以上討論的是影響變壓器油電氣性能的主要因素,此外,變壓器油在使用中還有其他影響其電氣性能的因素也同樣應引起我們的重視。交直流復合電壓下變壓器油中電弧放電及產氣特性周遠翔S姜鑫鑫S陳維江2,沙彥超S孫清華S張海燕2(1.清華大學電機工程與應用電子技術系電力系統及發電設備控制和仿真 重點,加壓方式試驗采用升壓法和恒壓法兩種方法。升壓法為在試品上分別施加交流,直流和不同比例的交直流疊加電壓,以恒定速度升壓直至擊穿,交流電壓和直流電壓采用直接升壓擊穿的方式,升壓速度2kV/s(有效值),記錄擊穿電壓峰值(以下如無特別說明,本文所描述的電壓均為峰值)。交直流疊加電壓采用預加電壓方式。
預加的直流電壓分別為15,30,45和60kV,預加直流電壓1min以后以恒定速度升高交流電壓直至擊穿,以擊穿時的電壓峰值為擊穿電壓,加壓方式如所示,擊穿后抽取油樣利用氣相色譜法測量油中溶解氣體體積分數(采用氣相色譜法。在放電發生后,通過脫氣處理試驗電極模型Fig,1交直流疊加電壓加壓方式Fig,2將溶解在油中的氣體脫出并用色譜儀測量其中各種氣體的體積,換算成每升油中所溶解氣體的體積),然后再以同樣方式加壓擊穿,重復6次。比較交流,直流和不同比例交直流疊加電壓下的擊穿電壓,以及擊穿過程中產生的油中溶解氣體體積分數,恒壓法是在試品上分別施加電壓峰值為65kV的交流,直流和不同比例的交直流疊加電壓(紋波因數分別為0。
和1.8。本文中紋波因數定義為交流分量峰值與直流分量平均值之比),持續時間2h,試驗中記錄擊穿次數,并在0.5,1和2h時抽取油樣,測量油中溶解氣體體積分數,對交流電壓,直流電壓和交直流疊加電壓作用下2h內放電產生的變壓器油中溶解氣體體積分數進行對比研究。1.4油中溶解氣體擴散平衡時間擊穿后產生的氣體在油中達到穩定平衡需要一定的時間,氣體在容器中的擴散溶解平衡時間通過試驗確定:在一次擊穿試驗后撤去電壓,并于放電后5,10,15,20min和2h抽取氣體。測量油中溶解氣體體積分數,得到的結果如所示,其中各氣體成分在10mn以后變化已經非常弱,可以認為油中溶解氣體已經基本達到平衡,因此每次放電10mn后即可以進行油中溶解氣體體積分數的。高壓開關柜
01/農硨社牲V油中氣體溶解平衡時間2試驗結果2.1升壓法試驗的變壓器油擊穿和產氣特性2.1.1升壓法中變壓。直流和預加不同直流分量的交直流疊加電壓,記錄不同類型電壓作用下的擊穿電壓,試驗中預加的電壓直流分量分別為15,30,45和60kV,試驗結果如所示,擊穿電壓取擊穿瞬時的電壓峰值,從可以看到,試品在交流電壓下的擊穿電壓******。平均擊穿電壓達到104kV,變異系數0.107(變異系數為標準差與均值的比率),而直流下擊穿電壓,平均擊穿電壓僅為71.3kV,變異系數0.109.交直流疊加電壓的變異系數稍大,在0.10.137之間。達到試驗數據的分散性要求,直流電壓的擊穿電壓比交流電壓降低3。
而在交直流疊加電壓作用下,試品擊穿電壓介于交流和直流擊穿電壓之間,其中預加的直流分量對油隙擊穿電壓有明顯影響,預加直流分量越大其擊穿電壓越低。2.1.2升壓法的產氣規律不同電壓形式的試品擊穿電壓Fig,升壓法擊穿試驗的氣體體積分數(每種氣體與總氣體的體積比)所示為不同電壓類型作用下擊穿后的產氣組分體積分數(每種氣體與總氣體的體積比),其中預加不同直流分量的交直流疊加電壓擊穿后油中溶解氣體體積分數(每種氣體與總氣體的體積比)基本一致。因此只列出預加15kV直流電壓的情況,CO,C2僅在絕緣紙的放電過程中才會產生,而變壓器油放電過程中CO,C2的體積分數(換算后每升油中所溶解氣體的體積)未發生變化。
且三比值法中并未涉及這兩種氣體,因此未列出。不管是交流電壓,直流電壓還是交直流疊加電壓作用下,其擊穿后產生氣體的體積分數(每種氣體與總氣體的體積比)基本一致,H2和C2H2氣體體積分數(每種氣體與總氣體的體積比)分別在20%和65%以上,而其他3種氣體體積分數(換算后每升油中所溶解氣體恒壓法試驗2h內擊穿次數Fig。氣體(a>直流電壓下氣體體積分數%/栽汆砥適拄r的體積)從高到低排列,依次為C2H4,CH4和,2氏,根據試驗得到的油中溶解氣體體積分數(換算后每升油中所溶解氣體的體積)以及改良三比值法的編碼規則,可以計算得到放電后油中氣體體積分數(換算后每升油中所溶解氣體的體積)的三比值編碼。升壓法試驗中交流。
油中含水量增加而紙中含水量降低,即紙中含水向油中擴散,運行溫度降低。擴散方向相反,因此,較高油溫的變壓器在低溫環境下退出運行時或當油含水量過高退出運行時,油的含水部分向紙中擴散,另外,由于油溫降低,油中含水量大于飽和溶解量,多余的水分會從油中析出而沉于油箱底或者沉在冷卻器底部。當變壓器重新投入運行時,冷卻器底部的水會由油泵導入變壓器線圈,同時水向變壓器的高場強區移動,造成潛在危險,這種情況必須引起變壓器運行部門注意,對油的含水量必須控制在符合要求的數值之內,降低油的含水量對提高變壓器運行及減緩油老化有重要作用。為了降低油的含水量,可以采取對油進行真空加熱法處理,油溫加熱到60~70弋,抽高。
將油中的含水量降下來,純凈油的擊穿場強很高,當油中存在雜質和水分時,油的擊穿電壓明顯下降,變壓器中有大量的絕緣材料。而油中含有纖維雜質,其中含有水分的纖維更易導電,介電系數大,容易沿電場方向排列成雜質小橋,沿小橋的泄漏電流大,發熱多,易引起水分汽化,從而使氣泡擴大,擊穿就會在這些小橋和氣泡中發生,電場越均勻,雜質對擊穿電壓的影響越大。擊穿電壓的分散性也越大,在不均勻電場中,雜質對耐壓及沖擊電壓的影響較小,這是因為場強******處發生局部放電時,油發生擾動致使雜質不易形成小橋,同時,在沖擊電壓的瞬時作用下,雜質還來不及形成小橋,油中懸浮顆粒在工頻電壓作用下對其絕緣強度的影響與顆粒的數量。大小,性質。
2種加壓方法:(1)以10kV/s的速度平滑加壓,(2)分級加壓,在1min內從65%預計擊穿電壓開始以每級為3%的預計擊穿電壓值升壓,2種施加電壓方法都顯示出隨顆粒量的增加,其絕緣強度逐漸降低。由于承受電壓的時間較長,分級加壓比平滑加壓更嚴重,2種加壓方法試驗結果之差估計約為15%,目前,采用濾油機來處理油中雜質,對于500kV變壓器要采用粗過濾器和精過濾器2種過濾器來油中雜質,以確保油的耐壓水平含氣量是變壓器油的主要控制指標之。含氣量直接影響超高壓變壓器的絕緣性能,運行中變壓器油含氣量******不超過4%,500kV變壓器油含氣量控制在0.5%以內,油中正常溶解空氣量為10%11%,當油的含氣量超過飽和溶解。
氣體會從油中釋放出來。懸浮在油中,當油中存在懸浮的氣泡時,在氣體與液體的交界面,由于2者的介電系數不同,界面電場將產生畸變,且氣體的耐電強度低,會產生氣泡放電,60kV級以上變壓器要求進行真空注油和成品試驗前的靜放處理,其目的就是為了變壓器器身內部和油中氣泡。防止產品試驗時發生氣泡放電,另外,當變壓器投入運行時,油中溶入過多的氣體會逐步排出并集中到氣體繼電器中,而發生誤動作,改善電場的均勻程度可以明顯提高優質變壓器油的工頻擊穿電壓,對于含有雜質的油在沖擊電壓作用下。雜質來不及形成[小橋",改善電場的均勻程度可以提高油的耐壓程度,油中的雜質在工頻耐壓作用下聚集和排列使電場產生畸變,擊穿電壓提高不。
生產中的制造缺陷,如產品內有金屬異物,氣泡,引線屏蔽不良,導體和接地件有毛刺等。影響變壓器電場均勻程度,造成產品局部放電,耐壓擊穿,采取以下措施,如增加鐵芯屏蔽,引線屏蔽良好,油箱護管,線圈靜電板,均壓球等加大電極曲率半徑的措施,可以改善變壓器電場均勻程度,不但縮小了絕緣結構的絕緣距離。而且同時提高了產品質量,產品出廠前對產品進行吊芯檢查,變壓器內部雜質和異物,******程度保證產品清潔度,變壓器油流動時,與絕緣材料磨檫產生靜電,流速越高,電壓越高,油在變壓器中流動產生帶電的現象稱為油流帶電。油流帶電可使變壓器電場產生畸變,油流帶電電壓與試驗電壓疊加,當疊加后的電場強度超過絕緣材料的局部放電場強或者擊穿場。
將危害變壓器的運行,油流速在0.5m/s時,油流帶電所產生的局部放電脈沖開始出現。在變壓器制造中,采用******流速為0.33m/s,油流帶電對超高壓變壓器影響更大,因此,變壓器必須控制油流速度,加大油流通道的截面,降低流速,油流通道的絕緣件應倒圓角,對大容量,高電壓等級變壓器采用大流量強迫油循環冷卻器油泵。降低油流帶電電壓,防止油流帶電引起絕緣局部放電或者絕緣擊穿現象發生,為了變壓器在運行中的油流帶電,在變壓器油中添加一定比例的改性的苯丙三唑(BTA)來改善變壓器油質,實驗結果表明,BTA不僅可以變壓器油的流動帶電。而且對變壓器油也無影響,用這種添加劑是提高變壓器運行度的有效措施之。
部分變壓器廠已開始在500kV變壓器中采用,以上討論的是影響變壓器油電氣性能的主要因素,此外,變壓器油在使用中還有其他影響其電氣性能的因素也同樣應引起我們的重視。交直流復合電壓下變壓器油中電弧放電及產氣特性周遠翔S姜鑫鑫S陳維江2,沙彥超S孫清華S張海燕2(1.清華大學電機工程與應用電子技術系電力系統及發電設備控制和仿真 重點,加壓方式試驗采用升壓法和恒壓法兩種方法。升壓法為在試品上分別施加交流,直流和不同比例的交直流疊加電壓,以恒定速度升壓直至擊穿,交流電壓和直流電壓采用直接升壓擊穿的方式,升壓速度2kV/s(有效值),記錄擊穿電壓峰值(以下如無特別說明,本文所描述的電壓均為峰值)。交直流疊加電壓采用預加電壓方式。
預加的直流電壓分別為15,30,45和60kV,預加直流電壓1min以后以恒定速度升高交流電壓直至擊穿,以擊穿時的電壓峰值為擊穿電壓,加壓方式如所示,擊穿后抽取油樣利用氣相色譜法測量油中溶解氣體體積分數(采用氣相色譜法。在放電發生后,通過脫氣處理試驗電極模型Fig,1交直流疊加電壓加壓方式Fig,2將溶解在油中的氣體脫出并用色譜儀測量其中各種氣體的體積,換算成每升油中所溶解氣體的體積),然后再以同樣方式加壓擊穿,重復6次。比較交流,直流和不同比例交直流疊加電壓下的擊穿電壓,以及擊穿過程中產生的油中溶解氣體體積分數,恒壓法是在試品上分別施加電壓峰值為65kV的交流,直流和不同比例的交直流疊加電壓(紋波因數分別為0。
和1.8。本文中紋波因數定義為交流分量峰值與直流分量平均值之比),持續時間2h,試驗中記錄擊穿次數,并在0.5,1和2h時抽取油樣,測量油中溶解氣體體積分數,對交流電壓,直流電壓和交直流疊加電壓作用下2h內放電產生的變壓器油中溶解氣體體積分數進行對比研究。1.4油中溶解氣體擴散平衡時間擊穿后產生的氣體在油中達到穩定平衡需要一定的時間,氣體在容器中的擴散溶解平衡時間通過試驗確定:在一次擊穿試驗后撤去電壓,并于放電后5,10,15,20min和2h抽取氣體。測量油中溶解氣體體積分數,得到的結果如所示,其中各氣體成分在10mn以后變化已經非常弱,可以認為油中溶解氣體已經基本達到平衡,因此每次放電10mn后即可以進行油中溶解氣體體積分數的。高壓開關柜
01/農硨社牲V油中氣體溶解平衡時間2試驗結果2.1升壓法試驗的變壓器油擊穿和產氣特性2.1.1升壓法中變壓。直流和預加不同直流分量的交直流疊加電壓,記錄不同類型電壓作用下的擊穿電壓,試驗中預加的電壓直流分量分別為15,30,45和60kV,試驗結果如所示,擊穿電壓取擊穿瞬時的電壓峰值,從可以看到,試品在交流電壓下的擊穿電壓******。平均擊穿電壓達到104kV,變異系數0.107(變異系數為標準差與均值的比率),而直流下擊穿電壓,平均擊穿電壓僅為71.3kV,變異系數0.109.交直流疊加電壓的變異系數稍大,在0.10.137之間。達到試驗數據的分散性要求,直流電壓的擊穿電壓比交流電壓降低3。
而在交直流疊加電壓作用下,試品擊穿電壓介于交流和直流擊穿電壓之間,其中預加的直流分量對油隙擊穿電壓有明顯影響,預加直流分量越大其擊穿電壓越低。2.1.2升壓法的產氣規律不同電壓形式的試品擊穿電壓Fig,升壓法擊穿試驗的氣體體積分數(每種氣體與總氣體的體積比)所示為不同電壓類型作用下擊穿后的產氣組分體積分數(每種氣體與總氣體的體積比),其中預加不同直流分量的交直流疊加電壓擊穿后油中溶解氣體體積分數(每種氣體與總氣體的體積比)基本一致。因此只列出預加15kV直流電壓的情況,CO,C2僅在絕緣紙的放電過程中才會產生,而變壓器油放電過程中CO,C2的體積分數(換算后每升油中所溶解氣體的體積)未發生變化。
且三比值法中并未涉及這兩種氣體,因此未列出。不管是交流電壓,直流電壓還是交直流疊加電壓作用下,其擊穿后產生氣體的體積分數(每種氣體與總氣體的體積比)基本一致,H2和C2H2氣體體積分數(每種氣體與總氣體的體積比)分別在20%和65%以上,而其他3種氣體體積分數(換算后每升油中所溶解氣體恒壓法試驗2h內擊穿次數Fig。氣體(a>直流電壓下氣體體積分數%/栽汆砥適拄r的體積)從高到低排列,依次為C2H4,CH4和,2氏,根據試驗得到的油中溶解氣體體積分數(換算后每升油中所溶解氣體的體積)以及改良三比值法的編碼規則,可以計算得到放電后油中氣體體積分數(換算后每升油中所溶解氣體的體積)的三比值編碼。升壓法試驗中交流。