





鋼板合金元素對回火轉變的影響
(1)提高回火穩定性 合金元素在回火過程中推遲馬氏體的分解和殘余奧氏體的轉變(即在較高溫度才開始分解和轉變), 提高鐵素體的再結晶溫度 使碳化物難以聚集長大,因此提高了鋼對回火軟化的抗力 即提高了鋼的回火穩定性。提高回火穩定性作用較強的合金元素有:V、Si、Mo、W、Ni、Co等。
(2)產生二次硬化 一些Mo、W、V含量較高的高合金鋼回火時 硬度不是隨回火溫度升高而單調降低 而是到某一溫度(約400℃)后反而開始增大 并在另一更高溫度(一般為550℃左右)達到峰值。這是回火過程的二次硬化現象 它與回火析出物的性質有關。當回火溫度低于450℃時 鋼中析出滲碳體; 在450℃以上滲碳體溶解 鋼中開始沉淀出彌散穩定的難熔碳化物Mo2C、W2C、VC等 使硬度重新升高 稱為沉淀硬化?;鼗饡r冷卻過程中殘余奧氏體轉變為馬氏體的二次淬火所也可導致二次硬化。
鋼板對奧氏體和鐵素體存在范圍的影響
擴大或縮小γ相區的元素均同樣擴大或縮小Fe-Fe3C相圖中的γ相區 且同樣Ni或Mn的含量較多時 可使鋼在室溫下得到單相奧氏體組織(如1Cr18Ni9奧氏體不銹鋼和ZGMn13高錳鋼等), 而Cr、Ti、Si等超過一定含量時 可使鋼在室溫獲得單相鐵素體組織 (如1Cr17Ti高鉻鐵素體不銹鋼等)。
對Fe-Fe3C相圖臨界點(S和E點)的影響
擴大γ相區的元素使Fe-Fe3C相圖中的共析轉變溫度下降 縮小γ相區的元素則使其上升 并都使共析反應在一個溫度范圍內進行。幾乎所有的合金元素都使共析點(S)和共晶點(E)的碳含量降低,即S點和E點左移 強碳化物形成元素的作用尤為強烈。
合金元素對鋼熱處理的影響
合金元素的加入會影響鋼在熱處理過程中的組織轉變。
合金調質鋼廣泛用于制造汽車、拖拉機、機床和其它機器上的各種重要零件,如齒輪、軸類件、連桿、螺栓等。調質件大多承受多種工作載荷,受力情況比較復雜,要求高的綜合機械性能,即具有高的強度和良好的塑性、韌性。合金調質鋼還要求有很好的淬透性。但不同零件受力情況不同,對淬透性的要求不一樣。成分特點 中碳鋼板:碳含量一般在0.25%~0.50%之間,以0.4%居多;加入提高淬透性的元素Cr、Mn、Ni、Si等:這些合金元素除了提高淬透性外,還能形成合金鐵素體,提高鋼的強度。如調質處理后的40Cr鋼的性能比45鋼的性能高很多;
(3) 加入防止第二類回火脆性的元素:含Ni、Cr、Mn的合金調質鋼,高溫回火慢冷時易產生第二類回火脆性。在鋼中加入Mo、W可以防止第二類回火脆性,其適宜含量約為0.15%~0.30%Mo或0.8%~1.2%的W。45鋼與40Cr鋼調質后性能的對比鋼號及熱處理狀態 截面尺寸/ mm sb/ MPa ss/MPa d5/ % y/% ak/kJ/m245鋼 850℃水淬 550℃回火 f50 700 500 15 45 700
40Cr鋼 850℃油淬 570℃回火 f50 (心部) 850 670 16 58 10
其特征是相比普通A3鋼板,具有更高的強度,抗變形能力。
45號鋼是中碳結構鋼,冷熱加工性能都不錯,機械性能較好,且價格低、來源廣,所以應用廣泛。它的 弱點是淬透性低,截面尺寸大和要求比較高的工件不宜采用。
45號鋼淬火溫度在A3+(30~50) ℃,在實際操作中,一般是取上限的。偏高的淬火溫度可以使工件加熱速度加快,表面氧化減少,且能提高工效。為使工件的奧氏體均勻化,就需要足夠的保溫時間。如果實際裝爐量大,就需適當延長保溫時間。不然,可能會出現因加熱不均勻造成硬度不足的現象。但保溫時間過長,也會也出現晶粒粗大,氧化脫碳嚴重的弊病,影響淬火質量。我們認為,如裝爐量大于工藝文件的規定,加熱保溫時間需延長1/5。
因為45號鋼淬透性低,故應采用冷卻速度大的10%鹽水溶液。工件入水后,應該淬透,但不是冷透,如果工件在鹽水中冷透,就有可能使工件開裂,這是因為當工件冷卻到180℃左右時,奧氏體迅速轉變為馬氏體造成過大的組織應力所致。因此,當淬火工件快冷到該溫度區域,就應采取緩冷的方法。由于出水溫度難以掌握,須憑經驗操作,當水中的工件抖動停止,即可出水空冷(如能油冷更好)。