一、耐蝕性能和產品形式
哈氏C-22合金是一種Ni-Cr-Mo合金,它對點蝕、縫隙腐蝕、晶間腐蝕和應力腐蝕斷裂均有極強的抵抗力。Ni、Cr、Mo和W的共同作用,使哈氏C-22合金在較大的氧化和還原性環境范圍內具有優異的耐蝕性能。 下表所示可見,哈氏C-22合金在大多數苛刻的環境中有突出的耐蝕性能,它對焊接操作或鍛造操作中晶間碳化物的析出和多元相的產生有抵抗性能。
哈氏C-22合金被廣泛地應用于煙氣脫硫系統、紙漿和造紙工業中的漂白系統、垃圾焚化爐、化工廠、制藥廠和放射性垃圾儲存等工業領域。 哈氏C-22合金強度高,并且有良好的延展性、焊接性和成形性能,因此在ASME和ASTM標準中都有一致的詳細敘述。其材料產品形式有板材、帶材、管材、棒材和鍛件等。
四、焊接性能
哈氏C-22合金的焊接性能非常好,它可以很容易地以鎢極氣體保護焊、金屬極氣體保護焊、埋弧焊等方法焊接,填料金屬要求有與之相匹配的化學成分。 五、機械性能 哈氏C-22合金具有良好的熱加工性能。其退火狀態室溫下的機械性能如下表所示,測試板材厚度范圍4.76mm到50.8mm.
4:Hastelloy C-59 Alloy(哈氏C-59合金)
一、引言
C-59是一種超低碳Ni-Cr-Mo合金,具有優異的耐蝕性能和高機械強度。其性質有如下幾條:
1、在氧化性和還原性條件下有廣泛的耐蝕性能;
2、對點蝕和縫隙腐蝕有良好的抵抗力,同時對氯致應力腐蝕斷裂有免疫特性。
3、對無機酸如硝酸、磷酸、硫酸、鹽酸和硫酸鹽酸混合酸有良好的耐蝕性能;
4、對含有雜質的無機酸同樣有良好的耐蝕性能;
5、對40℃以下任何濃度的鹽酸有良好的耐蝕性能;
6、被許可在-196-450℃之間使用于壓力容器上;
7、被NACE標準MR-01-75 Ⅶ級許可使用在酸氣環境下。 (NACE是美國和印度的電子顧問委員會)
應用:C-59合金在化工、石油化工、能源和環保工程等。
1、含氯有機過程設備,尤其是在有鹵族酸性催化劑存在的情況下;
2、紙漿和造紙工業中的溶解和漂白系統設備;
3、焚化爐和煙氣脫硫系統的預熱器、閥門、葉輪等元件;
4、酸氣處理系統設備和元件;
5、醋酸和醋酐反應器;
6、硫酸冷凝器。
四、物理性能
密度:8.6g/cm3 熔點范圍:1310-1360℃ 磁導率:20℃,(RT)≤1.001 高溫下的物理性能
傳統的劃分高溫合金材料可以根據以下3 種方式來進行: 按基體元素種類、合金強化類型、材料成型方式來進行劃分。
1、按基體元素種類
⑴鐵基高溫合金
鐵基高溫合金又可稱作耐熱合金鋼。 它的基體是Fe 元素,加入少量的Ni、Cr 等合金元素,耐熱合金鋼按其正火要求可分為馬氏體、奧氏體、珠光體、鐵素體耐熱鋼等。
⑵鎳基高溫合金
鎳基高溫合金的含鎳量在一半以上,適用于1 000℃以上的工作條件,采用固溶、時效的加工過程,可以使抗蠕變性能和抗壓抗屈服強度大幅。目前就高溫環境使用的高溫合金來分析,使用鎳基高溫合金的范圍遠遠超過鐵基和鈷基高溫合金用處。同時鎳基高溫合金也是我國產量、使用量的一種高溫合金. 很多渦輪發動機的渦輪葉片及燃燒室,甚至渦輪增壓器也使用鎳基合金作為制備材料。半個多世紀以來,航空發動機所應用的高溫材料承受高溫能力從20 世紀40 年代末的750℃提高到90 年代末的1 200℃應該說,這一巨大也促使鑄造工藝加工及表面涂層等方面快速發展。
⑶鈷基高溫合金
鈷基高溫合金是以鈷為基體,鈷含量大約占60%,同時需要加入Cr、Ni 等元素來高溫合金的耐熱性能,雖然這種高溫合金耐熱性能較好,但由于各個鈷資源產量比較少,加工比較困難,因此用量不多。通常用于高溫條件( 600 ~ 1 000℃) 和較長時間受極限復雜應力高溫零部件,例如航空發動機的工作葉片、渦 、燃燒室熱端部件和航天發動機等。為了獲得更優良的耐熱性能,一般條件下要在制備時添加元素如W、MO、Ti、Al、Co,以保證其優越的抗熱抗疲勞性。
2、合金強化類型
根據合金強化類型,高溫合金可以分為固溶強化型高溫合金和時效沉淀強化合金。
⑴固溶強化型
所謂固溶強化型即添加一些合金元素到鐵、鎳或鈷基高溫合金中,形成單相奧氏體組織,溶質原子使固溶體基體點陣發生畸變,使固溶體中滑移阻力增加而強化。有些溶質原子可以降低合金系的層錯能,提高位錯分解的傾向,導致交滑移難于進行,合金被強化,達到高溫合金強化的目的。
⑵時效沉淀強化
所謂時效沉淀強化即合金工件經固溶處理,冷塑性變形后,在較高的溫度放置或室溫保持其性能的一種熱處理工藝。例如:GH4169 合金,在650℃的屈服強度達1 000 MPa,制作葉片的合金溫度可達950℃。
目前各種先進鑄件制造技術和加工設備在不斷開發和完善,如熱控凝固、細晶工藝、激光成形修復技術、耐磨鑄件鑄造技術等,原有技術水平不斷提高完善從而提高各種高溫合金鑄件產品的質量一致性和可靠性。
不含或少含鋁、鈦的高溫合金,一般采用電弧爐或非真空感應爐冶煉。含鋁、鈦高的高溫合金如在大氣中熔煉時,元素燒損不易控制,氣體和夾雜物進入較多,所以應采用真空冶煉。為了進一步降低夾雜物的含量,改善夾雜物的分布狀態和鑄錠的結晶組織,可采用冶煉和二次重熔相結合的雙聯工藝。冶煉的主要手段有電弧爐、真空感應爐和非真空感應爐;重熔的主要手段有真空自耗爐和電渣爐。
固溶強化型合金和含鋁、鈦低(鋁和鈦的總量約小于4.5%)的合金錠可采用鍛造開坯;含鋁、鈦高的合金一般要采用擠壓或軋制開坯,然后熱軋成材,有些產品需進一步冷軋或冷拔。直徑較大的合金錠或餅材需用水壓機或快鍛液壓機鍛造。
2、結晶冶金工藝
為了減少或鑄造合金中垂直于應力軸的晶界和減少或疏松,近年來又發展出定向結晶工藝。這種工藝是在合金凝固過程中使晶粒沿一個結晶方向生長,以得到無橫向晶界的平行柱狀晶。實現定向結晶的首要工藝條件是在液相線和固相線之間建立并保持足夠大的軸向溫度梯度和良好的軸向散熱條件。此外,為了全部晶界,還需研究單晶葉片的制造工藝。
3、粉末冶金工藝
粉末冶金工藝,主要用以生產沉淀強化型和氧化物彌散強化型高溫合金。這種工藝可使一般不能變形的鑄造高溫合金獲得可塑性甚至超塑性。
4、強度提高工藝
⑴固溶強化
加入與基體金屬原子尺寸不同的元素(鉻、鎢、鉬等)引起基體金屬點陣的畸變,加入能降低合金基體堆垛層錯能的元素(如鈷)和加入能減緩基體元素擴散速率的元素(鎢、鉬等),以強化基體。
⑵ 沉淀強化
通過時效處理,從過飽和固溶體中析出第二相(γ’、γ"、碳化物等),以強化合金。γ‘相與基體相同,均為面心立方結構,點陣常數與基體相近,并與晶體共格,因此γ相在基體中能呈細小顆粒狀均勻析出,阻礙位錯運動,而產生顯著的強化作用。γ’相是A3B型金屬間化合物,A代表鎳、鈷,B代表鋁、鈦、鈮、鉭、釩、鎢,而鉻、鉬、鐵既可為A又可為B。鎳基合金中典型的γ‘相為Ni3(Al,Ti)。γ’相的強化效應可通過以下途徑得到加強:
①增加γ‘相的數量;
②使γ’相與基體有適宜的錯配度,以獲得共格畸變的強化效應;
③加入鈮、鉭等元素增大γ’相的反相疇界能,以提高其抵抗位錯切割的能力;
④加入鈷、鎢、鉬等元素提高γ‘相的強度。γ"相為體心四方結構,其組成為Ni3Nb。因γ"相與基體的錯配度較大,能引起較大程度的共格畸變,使合金獲得很高的屈服強度。但超過700℃,強化效應便明顯降低。鈷基高溫合金一般不含γ相,而用碳化物強化。
秉爭實業有限公司坐落在秉爭實業有限公司,本公司是一家提供 湖南株洲銅合金的專業供應商及生產商,在市場競爭強烈的今天,公司本著一切以客戶所需,提供更方便、更快捷、更有效的服務建立了完善的售后服務體系,擁有一支專業技術精湛、經驗豐富的團隊,為客戶提供365天,全天候服務。多年來的勵精圖治,使我公司贏得了廣大客戶的一致好評。我們將誠實守信,追求卓越的經營理念,竭誠為客戶提供優良的產品和服務。
自1956年爐高溫合金GH3030試煉成功,迄今為止,我國高溫合金的研究、生產和應用已歷經60年的發展歷程。60年的高溫合金發展可以分為三個階段。
個階段:從1956年至20世紀70年代初是我國高溫合金的創業和起始階段。本階段主要是仿制前蘇聯高溫合金為主體的合金系列,如:GH4033,GH4049,GH2036,GH3030,K401和K403等。
第二個階段:從20世紀70年代中至90年代中期,是我國高溫合金的提高階段。主階段主要試制歐美型號的發動機,提高高溫合金生產工藝技術和產品質量控制。
第三階段:從20世紀90年代中至今,是我國高溫合金的全新發展階段。本階段主要是應用和開發了一批新工藝,研制和生產了一系列高性能、次的新合金。
目前,我國的高溫合金研究主要研究單位是鋼鐵研究總院、北京航空材料研究院、中國科學院金屬研究所、北京科技大學、東北大學、西北工業大學等,主要生產企業有:中航工業、鋼研高納、煉石有色、撫順特鋼、高鋼特鋼和第二重型機械集團萬航模鍛廠(二重)等。在此基礎上,我國已具備了高溫合金新材料、新工藝自主研發和研究的能力。
雖然高溫金屬合金材料在我國已發展近60年,但行業發展仍處于成長期。由于高溫金屬合金材料領域具有較高技術含量,該行業企業擁有較深護城河。我國高溫金屬合金每年需求量在2萬噸以上,國內年生產量在1萬噸左右,市場容量超過80億元,其中進口占比較大。未來20年我國各類軍機采購需求在2800架左右,民用飛機采購數量在5400架左右,對應的高溫合金需求在1500億以上,再加上500億的燃氣輪機需求,僅高溫合金空間一項就有2000億的市場空間即將打開。
我國目前的生產能力與需求相比存在兩個缺口:(1)生產能力不足。目前我國高溫合金生產企業數量有限,生產能力與需求之間存在較大缺口,在燃氣輪機、核電等領域的高溫合金主要還依賴進口。(2)高端產品難以滿足應用需求。我國的高溫合金生產水平與美國、俄羅斯等國有著較大差距,隨著我國研制更高性能的航空航天發動機,高溫合金材料在供應上存在無法滿足應用需求的現象 [1] 。