高硅含量使北海00Cr18Ni15Si4鋼對濃硝酸和含氧化劑的硝酸有非常出色的耐蝕性。而且硝酸濃度愈高(尤其是超過80%以后),其他不銹鋼越不耐蝕時,該鋼種越顯示出極低的腐蝕率。圖4-15是在沸騰濃硝酸中該鋼種與0Cr18Ni9鋼耐蝕性的對比。濃度超過90%的沸騰硝酸中,00Cr18Ni15Si4鋼的腐蝕率低于0.02mm/a,而北海0Cr18Ni9鋼的腐蝕率則在1.5mm/a以上。
該鋼種由于碳含量極低,即使在敏化狀態下耐晶間腐蝕性能也很好。休氏法晶間腐蝕實驗(65%HNO3,沸騰,10×48h)的腐蝕率僅為0.6g/(m2.h)。
北海00Cr18Ni15Si4鋼可進行鍛造和熱軋。熱加工加熱溫度為1080-1140℃(鋼錠加熱控制在1120℃以下),停鍛溫度為900℃。加熱爐氣氛要保持為弱氧化性,以防止鍛件增碳。工件加熱要均勻、燒透,避免火焰直接噴射和局部過熱,由于再結晶速度較慢(特別是當溫度較低時),要注意及時回爐加熱。
冷加工成形也容易進行,但由于加工硬化較快及變形量較大時容易變脆,要及時進行中間軟化退火。冷彎時彎曲半徑不宜太小。
該鋼種正確的熱處理制度為1100-1140℃加熱后水冷(固溶處理),加熱爐氣氛應為弱氧化性。熱加工、冷加工和焊后都要進行固溶處理。要注意固溶處理溫度不能過低,否則耐蝕性和力學性能(塑性和韌性)都會受影響。在敏化溫度區間(500-950℃)不宜較長時間受熱或緩慢冷卻通過。
該鋼種可使用包劑焊條進行手工電弧焊或惰性氣體保護焊。但應采用和低熱輸入、低電流和小直徑焊條,層間溫度也應較低。焊接材料成分應與母材基本相同,焊縫中的δ-鐵素體量不得超過10%。
北海鐵素體不銹鋼中的相
鐵素體不銹鋼中的相主要有碳化物、氮化物,金屬間相和馬氏體相等。
(1)碳化物和氮化物
研究表明,碳和氮在鐵素體中的溶解度非常低。例如,在含鉻26%的鐵素體不銹鋼中1093℃時,碳在鋼中的溶解度為0.04%,而在927℃僅為0.004%,溫度再低要降到0.004%以下;927℃以上時,氮在鋼中的溶解度為0.023%,而在593℃僅為0.006%,因此,鐵素體不銹鋼在高溫加熱和在隨后冷卻的過程中,即使急冷,也常常難以防止碳化物和氮化物的析出。
鐵素體不銹鋼中的碳化物主要是(Cr,Fe)23C6和(Cr,Fe)7C3 .
鐵素體北海不銹鋼中的氮化物主要是CrN+Cr2N。
(2)金屬間相
鐵素體北海不銹鋼中的金屬間相主要有αˊ相和б相
① αˊ相:早期曾發現,鉻含量>15%的鐵素體不銹鋼在400-500℃范圍內長時間保溫會產生強烈的脆化,并使鋼的強度硬度顯著提高。這種現象一般稱之為475℃脆化。
北海不銹鋼的物理性能主要用以下幾方面來表示:
①.熱膨脹系數
因溫度變化而引起物質量度元素的變化。膨脹系數是膨脹-溫度曲線的斜率,瞬時膨脹系數是特定溫度下的斜率,兩個指定的溫度之間的平均斜率是平均熱膨脹系數。膨脹系數可以用體積或者是長度表示,通常是用長度表示。
②.密度
物質的密度是該物質單位體積的質量,單位是kg/m3或1b/in3?!?
③.彈性模量
當施加力于單位長度棱住的兩端能引起物體在長度上的單位變化時,單位面積上所需的力稱為彈性模量。單位為1b/in3或N/m3。
④.電阻率
在單位長度立方體材料的兩對面之間測量的電阻,單位用Ω·m,μΩ·cm或(已廢的)Ω/(circular mil.ft)來表示。
⑤.磁導率
無量綱系數,表示物質易被磁化的程度,是磁感應強度與磁場強度之比。
⑥.熔化溫度范圍
確定北海合金開始凝固和凝固完了的溫度。
⑦.比熱
單位質量的物質溫度改變1度所需要的熱量。在英制和CGs制中二者比熱的數值相同,因為熱量的單位(Biu或cal)取決于單位質量的水升高1度聽需的熱量。國際單位制中比熱的數值與英制或CGS制是不同的,因為能量的單位(J)是按不同的定義定的。比熱的單位是Btu(1b·0F)及J/(kg ·k)。
⑧.熱導率
物質導熱的速率的量度。北海不銹鋼板在單位截面積物質上建立單位長度上的1度的溫度梯度時,那么熱導率定義為單位時間傳導的熱量,熱導率的單位為 Btu/(h·ft·0F)或w/(m ·K)。
⑨.熱擴散率
χ相和Laves相
χ相主要出現在含鉬的不北海銹鋼中,是具有體心立方結構的金屬間化合物,每個晶胞內含有58個原子,代表的化學成分是Fe36Cr12Mo10。但是由于金屬原子的相互置換,其化學組成可在一定的范圍內變動。在奧氏體北海不銹鋼中,該相的實際成分多為(FeNi)36Cr18Mo4。χ相主要在晶界,非共格孿晶界和晶內的位錯處開始生成。晶內生成的χ相與奧氏體基體保持一定的位向關系。
Laves相(η相)是B2A型固定原子構成的金屬間化合物。在含鉬或鈮的奧氏體北海不銹鋼中形成的Laves相成分分別為Fe2Mo和Fe2Nb。該相具有六方結構,每個晶胞中含有12個原子。與碳化物,б相和χ相等相比,Laves相在鋼中生成較慢,生成量也較少,且主要是晶內沉淀,與奧氏體基體也保持一定的位向關系。為形成該相,對B,A原子的相對大小有嚴格的要求:兩者原子半徑的比值不得大于1.225。
影響χ相和Laves相沉淀的因素是相似的。鋼中合金元素有重要影響。鉬、硅和鈦會加速χ相和Laves相的形成,特別是鉬的作用更為明顯;鎳、碳和氮含量的提高對這兩種相的沉淀均有抑制作用。冷加工對這兩種中間相的沉淀速度和沉淀量有不太強的促進效果。
奧氏體不銹鋼中χ相和Laves相的沉淀,也像б相一樣,導致耐蝕性下降及塑性、韌性的降低。但是由于這些相的沉淀溫度與碳化物及б相的沉淀溫度大體上相重合,因而在實際時效過程中,單獨出現χ相或Laves相的情況是極少見的,這些相總是與碳化物、б相等相伴隨而出現,且往往是次要相和后生相。所以,這些相的形成對不銹鋼耐蝕性和力學性能的影響常常被作為主要相的碳化物或б相的作用所掩蓋。