眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司自成立以來,始終遵循“科技向導,服務先行,誠信為本”的經營理念,堅持以客戶的大利益為己任,注重 山東萊蕪16錳鋼板產品的研發投入。嚴格按照ISO9000質量管理體系的標準運行,求精務實創新奮進,為各界客戶提供符合各區域特點的優質 山東萊蕪16錳鋼板產品及完美解決方案。
基于深冷處理提供的溫度場和永磁體提供的勻強磁場,對42CrMo鋼板合金鋼進行磁場深冷處理,并與常規工藝和深冷處理工藝進行了對比分析。結果表明:磁冷工藝在深冷處理工藝的基礎上進一步提高了42CrMo鋼的耐磨性,磁冷工藝處理材料的耐磨性較常規工藝和深冷工藝分別提高約26. 7%和22. 2%。
這是由于深冷處理使得殘留奧氏體進一步轉化為馬氏體;深冷處理也使得過飽和馬氏體析出大量碳生成碳化物;深冷處理中磁場的存在對α-Fe晶格的作用使過飽和馬氏體析出碳的方向得到優化,回火屈氏體在磁場方向致密聚集,耐磨性提高。 基于有限元計算分析了直徑為Φ40 mm的42CrMo鋼圓棒試樣分別使用淬火油和PAG水基液淬火后試樣不同位置的組織、硬度以及淬火過程中的溫度變化,采用硬度檢測和顯組織分析對模擬結果進行了驗證。42crmo鋼板結果表明,當使用淬火油淬火時,試樣表面由奧氏體向馬氏體和貝氏體轉變,心部由奧氏體向貝氏體轉變;當使用PAG水基液淬火時,試樣表層幾乎轉變成馬氏體,心部轉變成馬氏體和貝氏體;試樣經淬火油和PAG水基液淬火后,表面硬度分別為58和55 HRC,均由表面至心部硬度逐漸降低,但使用PAG水基液淬火后試樣的心部硬度比用淬火油的高5 HRC,約為50 HRC。
目的提高42CrMo鋼板激光淬火后硬化層的深度和分布均勻性。方法利用COMSOL Multiphysics軟件對42CrMo鋼激光淬火過程中溫度場的演變進行分析,且考慮材料的熱物性參數隨溫度變化。通過設定激光工藝參數模擬試樣的溫度場分布,利用馬氏體轉變條件得到硬化層形貌尺寸。參照模擬結果,利用連續輸出的光纖耦合半導體激光器對42CrMo鋼進行激光淬火實驗,用熱電偶測溫儀對試樣測溫并與模擬的溫度歷史曲線進行對比,用光學顯鏡對試樣橫截面處硬化層形貌進行分析,將實驗所得硬化層形貌與模擬結果進行比較。并在相同的功率密度下,改變光斑的幾何尺寸進行模擬,分析并比較硬化層的幾何特征。結果實驗所測某點的溫度歷史曲線與模擬結果一致性較高,硬化層實際形貌與模擬結果基本吻合。
針對具有不同淬硬層深度42CrMo鋼板軸承的許用接觸應力大小不同的問題,采用線性回歸法建立 變形量與 接觸應力之間的線性方程,計算許用接觸應力。通過試驗分析了套圈淬硬層深度對軸承許用接觸應力的影響。結果表明,當淬硬層深度不大于6 mm時,許用接觸應力隨淬硬層深度的增大而增大。
以常用齒輪鋼42CrMo鋼板為研究材料,采用不同空氣流量對其進行離子氮氧共滲,并與傳統離子滲氮進行對比。利用光學顯鏡、XRD和電化學工作站對滲層的顯組織、物相和耐蝕性進行了測試和分析。研究結果表明,在550℃+4h相同溫度和時間條件下,離子氮氧共滲化合物層比傳統離子滲氮滲層厚度增加50%以上,氮化疏松層級別提高到1~2級;同時,離子氮氧共滲后滲層表層形成了一薄層Fe3O4,使耐蝕性得到顯著提高,0.3L/min為 空氣流量。該研究可為改進42CrMo表面改性工藝方案提供參考。
本文通過對42CrMo鋼在N32+N15混合機油、快速淬火油和PAG水溶性淬火介質中的淬火試驗,對其機械性能、環保等進行分析對比。試驗結果表明,42CrMo鋼板在12%PAG水溶性淬火介質中淬火優于在油類冷卻劑中淬火,并且具有環保效果。
為了建立適用于冷塑性加工力學性能研究的材料本構模型,提出了一種基于材料觀變形機制分析的本構模型建立及其驗證方法。以高脆硬性的淬火態42CrMo鋼板為例,首先根據材料的化學成分和硬度,運用數值計算方法獲取冷塑性變形流動應力數據,然后通過分析流動應力數據特點建立了Z-A (Zerilli-Armstron)修正本構方程, 結合硬度壓痕實驗結果和有限元仿真對本構方程有效性進行了驗證。結果表明,修正后的Z-A本構模型擬合效果好,42crmo鋼板相關度較高;硬度壓痕實驗結果與仿真結果整體誤差較小,所建立的本構方程能夠準確描述材料的力學行為,可以用于淬火態42CrMo鋼冷塑性加工的力學特性研究中。
眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料有限公司