別再糾結于文字描述了,觀看視頻,讓租賃箱變口碑好種類齊全各種電力設備租賃產品為你展現真實魅力!
以下是:租賃箱變口碑好種類齊全各種電力設備租賃的圖文介紹
一、柴油發電機房防雷接地總體要求 (1)發電機房應設置等電位接地端子板,等電位接地端子板的連接點應滿足機械強度和電氣連續性的要求。 (2) 柴油發電機組工程共用接地裝置應與總等電位接地端子板連接,通過接地干線引至樓層等電位接地端子板。 (3) 柴油發電機組工程接地干線應采用多股銅芯導線或銅帶,其截面積不應小于 16mm2。接地干線應在構筑物內明敷,并應與地下箱體主鋼筋作等電位連接。 (4) 柴油發電機組工程防雷接地與交流工作接地、直流工作接地、保護接地共用一組接地裝置時,其接地電阻按其中小值確定。 二、發電機房火災自動報警系統接地 (1) 火災自動報警系統接地裝置的接地電阻值應符合下列要求: ①采用專用接地裝置時,接地電阻不大于 4Ω。 ②采用共用接地裝置時,接地電阻不大于 1Ω。 (2) 火災自動報警系統應設專用的接地干線,并應在消防控制室,設置專用接地板。專用接地干線應從消防控制室專用接地板引至接地體。 (3) 專用接地干線應采用銅芯絕緣導線,其線芯截面面積不應小于 25mm2。專用接地干線宜穿硬質塑料管敷設至接地體。 (4) 由消防控制室接地板引至各消防電子設備的專用接地線應選用銅芯絕緣導線,其線芯截面面積不應小于 4mm2。 (5) 消防電子設備凡采用交流供電時,設備的金屬外殼和金屬支架等應作保護接地, 接地線應與電氣保護接地干線( PE)相連。 (6) 火災報警系統的報警主機、聯動控制盤、火災應急廣播、對講通信等的信號傳輸線纜宜在進出柴油發電機組工程直擊雷非防護區( LPZ0A)或直擊雷防護區(LPZ0B)與 防護區(LPZ1)交界處裝設適配的信號浪涌保護器。 (7) 柴油發電機組工程消防控制室與本地區或城市“119”報警指揮中心之間聯網的進出線路端口應裝設適配的信號浪涌保護器。 柴油發電機組工程區域報警器的金屬機架(殼)、金屬線槽(或鋼管)、電氣豎井內的接地干線、接線箱的保護接地端等,應就近接至等電位接地端予板。
如何激發發電機的更高性能? 想要充分使用發電機的性能,平時的維護非常重要。今天要給大家普及的是潤滑脂對于發電機的重要性!使用過程中,所有發電機潤滑脂都會因為氧化、油過度滲出、機械運行和油揮發等原因而發生變質。 在實際操作中,要維持乃至激發電機的性能,制定并遵守科學的電機軸承潤滑管理計劃是非常重要的。 激發發電機的更高性能的方法如下: 一、定時:影響潤滑脂更換頻率的因素非常復雜,一般包括溫度、使用連續性、潤滑脂注入量、軸承尺寸和轉速、密封有效性和潤滑脂在特殊應用方面的合適性等。因此,決定何時和多久更換一次潤滑脂并不是一件簡單的事情。通常情況下,連續運行的輕負荷至中負荷電機,要求至少每年更換一次潤滑脂;每高于標稱溫度10°C時,潤滑脂更換間隔時間需要減少一半。 二、定量:確定電機軸承的潤滑脂注入量是軸承初次潤滑和更換潤滑脂時的重要步驟之一。潤滑脂注入量不足會引起潤滑不足導致軸承故障,而注入量過多則會導致軸承故障和因潤滑脂被帶入電磁繞組內引發問題。可以參考以下兩種方法來確定軸承的潤滑脂注入量: · 軸承內剩余空間的1/2至2/3——當運轉速度小于軸承極限速度的50%時; 軸承內剩余空間的1/3至1/2——當運轉速度大于軸承極限速度的50%時。 · 確定軸承合適的潤滑脂注入量的另一種方法是采用以下公式: 潤滑脂注入量(克)=軸承外徑(毫米)X軸承寬度(毫米)X0.005; 或潤滑脂注入量(盎司)=0.114X軸承外徑(英寸)X軸承寬度(英寸)X0.005; 三、定序:盡可能多地舊潤滑脂是杜絕潤滑脂變質、泄漏和被污染的重要方法,也是避免不相容潤滑脂摻混的關鍵。因此在確認更換時間和更換量后,必須要遵循一套嚴謹的沖洗和換脂程序!以裝有加脂口和排脂口的滾動軸承為例,采用5步“減壓法”即可干凈利索地完成沖洗和換脂過程: 1. 拆:拆下位于下方的排脂口螺栓,從排脂口所有已硬化的油脂; 2. 擦:擦拭潤滑脂加脂口; 3. 注:將潤滑脂注入加脂口,直到新的潤滑脂從排脂口排出,確保舊的潤滑脂已全部排盡。在確保設備運行環境、可行的情況下,可在設備運行的同時執行本步驟; 4. 排:不用裝上排脂口螺栓,電機正常運行并保持運行溫度,潤滑脂會進行延展以分布均勻,直到多余的潤滑脂從排脂口排出,從而降低內部壓力; 5. 裝:多余潤滑脂并裝上排脂螺栓。 選擇正確的潤滑脂是整個電機軸承煥新的基礎。隨著發電機設備潤滑環境日趨嚴苛,選擇一款高性能的潤滑脂非常重要。潤滑脂是一種由基礎油、增稠劑和添加劑組成的半固體潤滑劑,優質的電機潤滑脂在粘度、稠度、抗氧化性、抗磨損、滴點、剪切穩定性等這些典型指標上都表現出色
柴油發電機運動部件故障的原因 柴油發電機曲柄連桿結構常見故障有拉缸、連桿磨損、敲缸、連桿短脫、螺栓斷裂、曲軸斷裂等,這些故障主要發生與高速運動部位,采集裝置難以安裝并進行數據采集,且發生故障后信號干擾信息較多,也難以準確診斷和識別。目前許多學者都比較傾向于地域數據的處理和診斷,也有部分學者考慮依靠動力學對柴油發電機運動部件進行分析和診斷,更進一步地找準故障產生的機理及原因。后者這種方法主要依靠計算機仿真軟件實現,通過對柴油發電機進行建模,設定柴油發電機各部件工作參數,設置各部件出現故障后的參數,進行通過仿真模擬,識別故障發生時各部件參數狀態。這一技術具有可操作性強、實驗周期短、省時、省資金等優點,該技術為未來發展的一個潛力方向。 運動部件產生故障主要原因主要為兩方面,一方面相互連接的兩個部件由于長時間的接觸,造成了磨損,使得接觸表面變形,在運動過程產生振動及噪聲,另一方面由于接觸部件之間發生嚴重的磨損后產生了相互運動過程的碰撞及撞擊,直接產生了異響等現象。顯而易見,各部位產生故障涉及到諸多方面的內容,包括機械動力、熱力、摩擦等,故障的分析不能僅僅依靠簡單的分析就可以進行診斷和確定。 1.拉缸故障診斷拉缸故障會引起活塞機件損壞、柴油發電機油耗增加、轉速降低、連桿斷裂、曲軸箱爆炸,嚴重影響發電機正常運行。目前主要通過對發電機進行故障信號檢測,判斷拉缸時振動信號頻域范圍,例如國外研究學者 Jacobo Porteiro 通過分析研究,利用人工神經網絡驗證了拉缸時發電機故障的特征,并分析預測了發電機內潤滑油內金屬顆粒的含量值。 2. 敲缸故障診斷敲缸指的是活塞撞擊氣缸內壁產生明顯異響的現象,敲缸時巨大的撞擊力使得缸體外壁產生較為強大的振動,同時長期的敲缸對活塞及缸體造成嚴重的破壞。在敲缸故障診斷方面,利用計算機仿真軟件,分析了在不同轉速、不同負載和敲缸程度下的故障信號特征,實現了對敲缸狀態下發電機故障的分析和診斷。 3.連桿軸異常診斷柴油發電機長時間大功率工作,連桿軸會產生磨損,使得軸承之間間隙變大,在連桿軸帶動活塞及曲軸運動過程,造成敲擊幅度變大,容易產生連桿的變形及斷裂。杜小元通過對兩岸頭與軸承之間的振動信號分析,實現了對往復式發電機連桿故障振動信號角域和值域的分析,實現驗證具有一定的可靠性。
維曼機電設備有限公司用心選材,整體采用高品質材料。做工精細提高產品質量,注重產品細節的制造。主營產品 湖南懷化600kw發電機租賃。我們本著生產優良、經銷誠實守信、服務熱情周到的服務宗旨和協助伙伴成就事業從而成就自己的事業的立業精神,為客戶提供良好的品質和服務。