1Cr18Ni12Mo3Ti0Cr18Ni12Mo3Ti和00Cr19Ni13Mo3這四種含氮奧氏體不銹鋼均是在其各自的不含氮鋼種的基礎上發展起來的。它們既保留了原來各相應不含氮鋼種的耐蝕性特點,同時由于氮的強化作用提高了強度和加工硬化傾向,而塑性、韌性仍然維持很高的水平。另外,氮的加入也進一步改善在某些方面的耐蝕性,特別是耐點腐蝕、縫隙腐蝕和晶間腐蝕性能。這些鋼可用在各相應不含氮鋼的應用場合,同時可承受更重的負荷,因而可減少材料消耗。從實用角度上講,目前重要的是0Cr19Ni9N和00Cr17Ni13Mo2N兩種。0Cr19Ni9N鋼主要用于要求一定耐蝕性和較高強度或減輕重量的設備及構件,比如飛機和宇航器中的部件與裝置,海水設備中泵、閥以及船舶的軸與推進器等。00Cr17Ni13Mo2N鋼主要用于化工、化肥(特別是尿素生產)裝置中的高壓設備和管線,如合成塔、反應器和容器有關設備。
χ相和Laves相
χ相主要出現在含鉬的不銹鋼中,是具有體心立方結構的金屬間化合物,每個晶胞內含有58個原子,代表的化學成分是Fe36Cr12Mo10。但是由于金屬原子的相互置換,其化學組成可在一定的范圍內變動。在奧氏體不銹鋼中,該相的實際成分多為(FeNi)36Cr18Mo4。χ相主要在晶界,非共格孿晶界和晶內的位錯處開始生成。晶內生成的χ相與奧氏體基體保持一定的位向關系。
Laves相(η相)是B2A型固定原子構成的金屬間化合物。在含鉬或鈮的奧氏體不銹鋼中形成的Laves相成分分別為Fe2Mo和Fe2Nb。該相具有六方結構,每個晶胞中含有12個原子。與碳化物,б相和χ相等相比,Laves相在鋼中生成較慢,生成量也較少,且主要是晶內沉淀,與奧氏體基體也保持一定的位向關系。為形成該相,對B,A原子的相對大小有嚴格的要求:兩者原子半徑的比值不得大于1.225。
影響χ相和Laves相沉淀的因素是相似的。鋼中合金元素有重要影響。鉬、硅和鈦會加速χ相和Laves相的形成,特別是鉬的作用更為明顯;鎳、碳和氮含量的提高對這兩種相的沉淀均有抑制作用。冷加工對這兩種中間相的沉淀速度和沉淀量有不太強的促進效果。
奧氏體不銹鋼中χ相和Laves相的沉淀,也像б相一樣,導致耐蝕性下降及塑性、韌性的降低。但是由于這些相的沉淀溫度與碳化物及б相的沉淀溫度大體上相重合,因而在實際時效過程中,單獨出現χ相或Laves相的情況是極少見的,這些相總是與碳化物、б相等相伴隨而出現,且往往是次要相和后生相。所以,這些相的形成對不銹鋼耐蝕性和力學性能的影響常常被作為主要相的碳化物或б相的作用所掩蓋。
當00Cr18Mo2(Ti),高純Cr18Mo2(Ti)鋼中含Ni+Cu量≤0.5%時,退火態一般不產生氯化物應力腐蝕破裂。表3-34和圖3-85為所得到的結果。
需要提出,鐵素體鉻不銹鋼的耐應力腐蝕也是有條件的。過量的鎳、銅、過高的碳、氮含量,遭受敏化處理(例如焊接),不適當冷加工以及過高的載荷(或殘余)應力等均可導致其應力腐蝕的出現。
冷、熱加工和熱處理工藝及焊接性能
試驗及實踐表明,00Cr18Mo2(Ti)以及高純Cr18Mo2(Ti)的冷、熱加工一般均不困難。這些鋼的高溫塑性 ,在1000-1200℃很易熱加工。但是,為了細化晶粒并獲得良好塑性,與前述鐵素體不銹鋼一樣,熱加工終止溫度應盡量低且變形量需足夠大。
根據冷彎、杯突試驗和深沖試驗結果,00Cr18Mo2(Ti)以及高純Cr18Mo2(Ti)薄板均具有優良的冷成型性。結果見表3-35和表3-36。鐵素體不銹鋼的冷加工硬化傾向雖較Cr-Ni奧氏體不銹鋼小,但由于其延伸率的 值較18-8鋼為低。因此,冷成型尚需選擇適合此特性的沖模具。
不銹鋼板噴漆時的注意事項有哪些
1、基礎處理,要想未來漆膜牢固不掉,一道工序就是先把不銹鋼表面處理干凈。處理的方法可以使用刀具鏟除原來的殘漆,也可以用砂紙打磨表面,好用噴砂,使表面清潔后還要粗化處理,加大底漆的附著面積。
2、噴(刷)底漆,底漆的作用一是防止金屬表面氧化,二是把面漆和金屬牢牢的連接在一起。底漆有好幾種。
3、面漆。因為是在露天,一方面要求漆膜耐氣候性好,另一方面又極難采用漆膜牢的烤漆,因此,建議用聚氨酯漆,是一種有固化劑的雙組份油漆,不用烘烤,常溫下以其固化劑就可固化得很徹底。如古象牌就很好。
4、不管是噴涂還是刷涂任何一種油漆,要分3-5次施工,一次不能涂得太厚,前次干燥后再涂下一次。新手易犯的毛病就是一次涂得太多,造成“流掛”瑕疵,既不美觀也不牢固。