因此如何合理的設置鐵芯以及如何合理的設計鐵芯結構成為提高真空滅弧室可靠性的關鍵。針對杯狀縱磁真空滅弧室觸頭,本文設計了兩種不同結構的鐵芯,一種是結構為環狀的鐵芯,為了減小渦流的影響,在環形鐵芯上開一個間隙為1 mm 的斷口;另一種結構為圓周方向布置的柱狀鐵芯,柱狀鐵芯相互不接觸,因此可以更好的減小渦流的影響。采用有限元分析方法對比分析了兩種不同結構鐵
芯對縱向磁場和剩余磁場以及磁場滯后時間的影響。 觸頭結構模型 文中仿真所采用的兩種不同鐵芯結構的觸頭模型如圖1 所示,觸頭杯均有4 個杯指,為了防止觸頭片上產生渦流,對應的在觸頭片上開有四個周向均勻布置的徑向直槽。觸頭外徑尺寸為78 mm,壁厚11 mm,弧柱直徑與觸頭外徑尺寸相同,柱狀鐵芯12 個,仿真模型中觸頭開距為10 mm,杯座材料為無氧銅,支撐盤材料為不銹鋼,觸頭片材觸頭在高真空中分離時,其電弧表現形式與外觀特性都與在空氣中的情形有較大區別。真空斷路器的擊穿機理目前主要有場致發射、粒撞擊和粒子交換
三種假說,在短間隙真空斷路器的相關研究中,通常由場致發射效應占主導。在觸頭斷開時刻,整個陰極表面會產生金屬蒸氣。理論上是由于觸頭分開瞬間,電流集中在觸頭表面某點上,導致金屬橋熔化且部分金屬原子發生電離。隨著觸頭開距的增大,場致發射與間隙擊穿增強,觸頭表面金屬凸點不斷溶化并向觸頭間隙補充金屬粒子。此時陰極斑點會在陰極表面形成,并有更多的高能等離子體形成并擴散至間隙內。電弧引燃后,充滿等離子體的電極間
隙變成良好導體,同時陽極開始向電弧提供粒子。在縱向磁場作用下,電弧等離子體由觸頭中心向周圍擴散,此過程會維持一段時間。對于交流真空斷路器而言,電流到達峰值后會逐漸減小,兩觸頭向等離子體提供的粒子同樣減少,此時電極間隙內主要為弧后殘存粒子,伴隨著觸頭完全斷開,殘存粒子逐漸擴散至消失,斷路器完成開斷。 真空電弧等離子體的產生過程,可以表現為觸頭開距增大、觸頭表面金屬蒸發,伴隨場致發射效應和金
屬電離,由于兩極電子、金屬離子的不斷補充,終形成電弧。在電弧等離子體的研究方面,王景、武建文等運用連續光譜法分析了電子溫度和電子密度,并討論了中頻情況下,電弧過渡及擴散兩種形態。胡上茂、姚學玲等利用RC 阻容式電荷收集器,對初始等離子體的觸發特性進行了研究。舒勝文、黃道春等通過對真空斷路器開斷過程的再研究,提出數值方針結合實驗的方法,給出開斷過程不同階段所需的數值仿真方法及關注點。趙子玉等通過C
CD 攝像技術,分析了真空電弧的重燃及抑制措施
對采集數據進行形態學操作,得到內部高能等離子體及電弧外部輪廓的時間-
面積變化曲線。從引弧、穩定燃弧、熄弧及弧后介質恢復四個角度,對不同階段的電弧面積變化做出定量分析,并探究電弧熄弧階段電弧內外面積差變化。實驗表明,通過分析不同階段的等離子體形態變化,能夠找到電弧平穩燃弧及弧后介質恢復的關鍵點,為高壓等級真空斷路器研發設計及后期電弧形態診斷提供進一步參考。 隨著我國電力系統的不斷發展,真空斷路器的生產數量逐漸超過中壓SF6開關。由于其體積小、開斷壽命長和電
流容量大等優點,真空斷路器的應用范圍越來越多向高壓、超高壓擴展。真空電弧是斷路器觸頭斷開時,依靠蒸發金屬蒸氣并電離來維持的低溫等離子體,其形成、發展和后熄滅對開斷電路有著重要影響。研究真空電弧等離子體的形態特征,對斷路器電場、磁場設計有很好的指導作用。 通過對高速攝像機采集到一組真空電弧分析,t= 0.2~6.8 ms 為引弧和穩定燃弧階段,此階段電弧形態主要為陰極斑點形成和電弧等離子體充滿真個觸頭間隙,因此時兩極不斷向間隙補充電子及高能粒子,故此時雖電弧整體輪廓不斷增大,但擴散現象并不明顯。為更加清晰地展示內外電弧幾何形態區別,本文主要對熄滅階段及弧后介質恢復階段的電弧形態做出
后期處理,對穩定燃弧階段的內部高能等離子體形態未做出細節分析。t=6.9ms 開始為真空熄弧階段,內外面積差開始激增,內部高能等離子體面積逐漸減小,電弧外部輪廓在縱向磁場作用下維持擴散狀態,其電弧原始圖像與內部高能等離子體分布二值圖像如圖6。圖中可看出內部高能電弧即將從兩極分斷開來,外部電弧輪廓基本維持在穩定擴散狀態。 t = 7.5 ms 以后熄弧階段開始向弧后介質恢復階段過渡,內部等
離子面積分布迅速減小,外部電弧輪廓也出現縮小現象,
高壓真空斷路器是關系到電力系統能否得到有效控制的關鍵性電器之一,只有保持它的良好運行狀態才能夠保證電路系統的正常運轉。依據斷路器的關鍵性功能,工作中務必要實時的檢測真空斷路器的運行狀態,及時的發現出現的問題采取相應的措施進行解決。本文跟大家分享高壓真空斷路器現場故障的處理方法,希望能為廣大網友提供參考。一、一般性的
真空斷路器的故障 斷路器故障(如斷路器拒合、據分、誤合誤分);儲能機構故障;真空度降低,滅弧能力受損;斷路器滅弧室滅弧能力下降等。二、故障原因分析 1、斷路器拒分、拒合 導致斷路器拒動主要原因有斷路器二次回路故障和機械部分故障兩方面。要根據不同的原因分情況進行解決。當檢測二次回路沒有出現故障的之后,要觀察操動機構主拐臂連接的萬向軸頭間隙的長度,有的時候該間隙過大的時候
任然能使得操動機器正常運轉,但是在這樣的情況先容易使得斷路器分合閘聯桿無法被帶動起來,終造成斷路器無法有規律的分合閘,所以要將該間隙維持在一定的范圍之內。 2、斷路器誤分 斷路器在一般的運轉情況之下,在還沒進行外施操作電源及機械分閘的時候,不要急于將斷路器分閘。要保證各項操作進行準確無誤之后,認真的檢測二次回路及動作機構。要是操動機構出現短路,此時分閘電源就會通過分閘線圈與短
路點形成回路,造成真空斷路器誤分合閘。導致接線短路主要的主要因素就是斷路器機構箱頂部漏雨,雨水和輸出拐臂連接成一條線恰好接觸到機構輔助的開關。 3、斷路器機構儲能后,儲能電機不停 操動機構儲能電機只有在斷路器在合閘后才能進行運轉,簧能量積聚滿格之后就會發出簧已儲能指示。當簧能量滿足之后,行程開關處于閉合狀態,儲能回路接通,電機帶電并保持運轉。 4、斷路器直流電阻增大
由于真空滅弧室的觸頭為對接式,所以在觸頭接觸電阻超出了實際的承載量范圍的話就會導致載流時觸頭的溫度上升,這樣通常會造成導電和開斷電路情況的出現,因此接觸電阻值務必不能大于出說明書規定的大值。觸頭簧的壓力的大小直接影響到接觸電阻的大小。所以說有在測量之前要仔細的檢查超行程是不是滿足要求。接觸電阻值的要是出現持續升高的情況也是在一定程度上反應著出觸頭電磨損度,它們之間的關系是相互影響的。
使觸頭在閉合碰撞時得以緩沖,把碰撞的動能轉彈性勢能,抑制觸頭的彈跳。(4)為分閘提供一個加速力。當接觸壓力大時,動觸頭得到較大的分閘力,容易拉斷會鬧熔焊點,提高分閘初始的加速度,減少燃弧時間,提高分斷能力。觸頭接觸壓力是一個很重要的參數,在產品的初始設計中要經過多次驗證、試驗才選取得比較合適。如觸頭壓力選得太小,滿足不了上述各方面的要求;但觸頭壓力太大,一方面需要增大合閘操作功,另外滅弧室和整機的機械強度要求也需要提高,技術上不經濟。接觸行程真空斷路器毫無例外地采用對接式接觸方式。動觸頭碰上靜觸頭之后就不能再前進了,觸頭接觸壓力是由每極觸頭壓縮彈簧(有時稱作合閘緩沖彈簧)提供的。所謂接觸行程,就是開關觸頭碰觸開始,觸頭壓簧施力端繼續運動至終結的距離,亦即觸頭彈簧的壓縮距離,故又稱壓縮行程。接觸行程有兩方面作用,一是令觸頭彈簧受研發、生產、銷售和服務為一體的規模型企業,公司技術力量雄厚,設備配套完善,產品型號多樣,隨著公司的不斷發展,產品設計科學、制作精良、造型美觀,是現代電網建設的理想的配套產品,其中戶內(外)真空斷路器,隔離開關,負荷開關,氧化鋅避雷器,熔斷器,穿墻套管,絕緣子,電流互感器,高壓電力計量箱等一系列高低壓電氣產品暢銷全國各地我們以“科技興業,質量創牌,誠經營,優良服務”的企業宗旨;一直致力于追求卓越的民族電氣工業,為廣大新老用戶提供優質的產品和良好的服務而不懈努力,您的滿意始終是我們追求的目標,真誠歡迎新老朋友惠顧,共創美好未來。壓而向對接觸頭提供接觸壓力;二是保證在運行磨損后仍然保持一定的接觸壓力,使之可靠接觸。一般接觸行程可取開距的20%~30%左右,10kV的真空斷路器約為3~4mm。真空斷路器的實際結構中,觸頭合閘彈簧設計成即使處于分閘位置,也有相當的預壓縮量,有預壓力。這是為使合閘過程中,當動觸頭尚未碰到靜觸頭而發生預擊穿時,動觸頭有相當力量抵抗電動力,而不致于向后退縮;當觸頭碰接瞬間,接觸壓力陡然躍增至預壓力數值,防止合閘彈跳,足以抵抗電動斥力,并使接觸初始就有良好狀態;隨著接觸行程的前進,觸頭間的接觸壓力逐步增大,接觸行程終結時,接觸壓力達到設計值。接觸行程不包括合閘彈簧的預壓縮量程,它實際上是合閘彈簧的第二次受壓行程。合閘速度平均合閘速度主要影響觸頭的電磨蝕。如合閘速度太低,則預擊穿時間長,電弧存在的時間長,觸頭表面電磨損大,甚至使觸頭熔焊而粘住,降低滅弧室的電壽命。但速度太高,容易產生合閘彈跳,操動機構輸出功也要增大,對滅弧室和整機機械沖擊大,影響產品的使用可靠性與機械壽命。平均合閘速度通常取0.6m/s左右為宜。分閘速度斷路器的分閘速度一般而言速度越快越好,這樣可以使首開相在電流趨近于0前2~3ms時能開斷故障電流;否則首開相不能開斷而延續至下一相,原來首開相變為后開相,燃弧時間加長了,增加了開斷的難度,甚至使開斷失敗。但分閘速度太快,分閘的反彈也大,反彈太大震動過劇亦容易產生重燃,所以分間速度亦應考慮這方面因素。