根據所需要的性質和具體應用場合不同,有時要求表面活性劑具有不同的親水親油結構和相對密度。通過變換親水基或親油基種類、所占份額及在分子結構中的位置,可以達到所需親水親油平衡的目的。經過多年研究和生產,已派生出許多表面活性劑種類,每一種類又包含眾多品種,給識別和挑選某個具體品種帶來困難。因此,必須對成千上萬種表面活性劑作一科學分類,才有利于進一步研究和生產新品種,并為篩選、應用表面活性劑提供便利。 表面活性劑的分類方法很多,根據疏水基結構進行分類,分直鏈、支鏈、芳香鏈、含氟長鏈等;根據親水基進行分類,分為羧酸鹽、硫酸鹽、季銨鹽、PEO衍生物、內酯等;有些研究者根據其分子構成的離子性分成離子型、非離子型等,還有根據其水溶性、化學結構特征、原料來源等各種分類方法。但是眾多分類方法都有其局限性,很難將表面活性劑合適定位,并在概念內涵上不發生重疊。 人們一般都認為按照它的化學結構來分比較合適。即當表面活性劑溶解于水后,根據是否生成離子及其電性,分為離子型表面活性劑和非離子型表面活性劑。 按極性基團的解離性質分類 1.陰離子表面活性劑:硬脂酸,十二烷基苯磺酸鈉 2.陽離子表面活性劑:季銨化物。 3.兩性離子表面活性劑:卵磷脂,氨基酸型,甜菜堿型。 4.非離子表面活性劑:烷基葡糖苷(APG),脂肪酸甘油酯,脂肪酸山梨坦(司盤),聚山梨酯(吐溫)六盤水回收橡膠原料行情

果膠的相對分子質量介于50~300ku之間,不同原料和工藝提取到的果膠的相對分子質量相差甚大。 凝膠法和體積排阻色譜法(High Performance Size Exclusion Chromatography,HPSEC)是測定果膠相對分子質量的主要方法。HPSEC測定較為準確,且結果信息量大。 HPSEC 法能夠測定果膠的重均分子質量(Mw) 和數均分子質量(Number-average Molecular Weight,Mn)。 多聚分散性Mw/Mn表征分子質量的分布寬度,Mw/Mn愈大,表明分子質量分布越寬,反之則分子質量分布范圍越窄。 [2] 目前,將HPSEC與多角度激光光散射檢測器(Multi-angle Laser Light Scattering,MALLS)和示差折光檢測器 (Refractive Index Detection,RI)串聯來表征果膠的 分子質量較為廣泛。 HPSEC-MALLS-RI 聯用技術的優點是通過MALLS和RI兩種檢測器的數據直接測出樣品圖譜中每個點的 分子質量,無需進行任何色譜柱標定和標準品參考。 這種方法特別適合于難以獲得標準品的果膠大分子結構的測定。六盤水回收橡膠原料行情

果膠是一類以聚半乳糖醛酸為主的雜多糖,商業化的果膠中Gal-A(半乳糖醛酸)含量≥65%。 在許多文獻中, 通常以Gal-A含量來表示果膠純度,測定Gal-A含量大多采用硫酸咔唑法和間羥基聯苯法,離子色譜測定更為準確。 此外還有重量法、果膠酸鈣滴定法和蒸餾滴定法。 不同原料的果膠單糖組成差異較大。 [2] 單糖構成可間接反映果膠結構, 在一些文獻中,通常以Gal-A(半乳糖醛酸)含量來表示果膠純度,果膠的中性糖大多在其側鏈中,因此Gal-A含量高;中性糖含量低的果膠,說明果膠中側鏈較少,反之說明果膠中側鏈含量較高。 目前,果膠單糖測定方法主要有陰離子交換色譜-脈沖安培檢測法(High Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection,HPAEC-PAD)、蒸發光散射法(Evaporative Light Scatter-ing Detector,ELSD) 和氣液相色譜法 (Gas-Liquid Chromatography,GLC)。 與HPAEC-PAD和ELSD法相比 ,GLC法需對水解后的樣品進行衍生才能測定,步驟更為繁瑣,而衍生效果的好壞直接影響單糖含量的測定值。 常用HPAEC-PAD法測定果膠的單糖組成, 此法無需柱前或柱后衍生,靈敏度高,重現性好。 六盤水回收橡膠原料行情

六盤水回收橡膠原料行情 1、外涂型抗靜電劑的作用機理 [2] 此類抗靜電劑加到水里 抗靜電劑分子中的親水基就插入水里 而親油基就伸向空氣。當用此溶液浸漬高分子材料時 抗靜電劑分子中的親油基就會吸附于材料表面。浸漬完后干燥 脫出水分后的高分子材料表面上 抗靜電劑分子中的親水基都向著空氣一側排列 易吸收環境水分 或通過氫鍵與空氣中的水分相結合 形成一個單分子導電層 使產生的靜電荷迅速泄漏而達到抗靜電目的。 2、表面活性劑類內混型抗靜電劑的作用機理 在高分子材料成型過程中 如果其中含有足夠濃度的抗靜電劑 當混合物處于熔融狀態時 抗靜電劑分子就在樹脂與空氣或樹脂與金屬 (機械或模具) 的界面形成稠密的取向排列 其中親油基伸向樹脂內部 親水基伸向樹脂外部。待樹脂固化后 抗靜電劑分子上的親水基都朝向空氣一側排列 形成一個單分子導電層。在加工和使用中 經過拉伸、摩擦和洗滌等會導致材料表面抗靜電劑分子層的缺損 抗靜電性能也隨之下降。但是不同于外涂敷型抗靜電劑 經過一段時間之后 材料內部的抗靜電劑分子又會不斷向表面遷移 使缺損部位得以恢復 重新顯示出抗靜電效果。由于以上兩種類型抗靜電劑是通過吸收環境水分 降低材料表面電阻率達到抗靜電目的 所以對環境濕度的依賴性較大。顯然 環境濕度越高 抗靜電劑分子的吸水性就越強 抗靜電性能就越顯著。 3、高分子 型抗靜電劑的作用機理 高分子 型抗靜電劑是近年來研究開發的一類新型抗靜電劑 屬親水性聚合物。當其和高分子基體共混后 一方面由于其分子鏈的運動能力較強 分子間便于質子移動 通過離子導電來傳導和釋放產生的靜電荷; 另一方面 抗靜電能力是通過其特殊的分散形態體現的。研究表明: 高分子 型抗靜電劑主要是在制品表層呈微細的層狀或筋狀分布 構成導電性表層 而在中心部分幾乎呈球狀分布 形成所謂的“芯殼結構” 并以此為通路泄漏靜電荷。因為高分子 型抗靜電劑是以降低材料體積電阻率來達到抗靜電效果 不完全依賴表面吸水 所以受環境的濕度影響比較小。

點擊查看中祥氫氧化鋰回收公司有限公司的【產品相冊庫】以及我們的【產品視頻庫】