高壓真空斷路器是關系到電力系統能否得到有效控制的關鍵性電器之一,只有保持它的良好運行狀態才能夠保證電路系統的正常運轉。依據斷路器的關鍵性功能,工作中務必要實時的檢測真空斷路器的運行狀態,及時的發現出現的問題采取相應的措施進行解決。本文跟大家分享高壓真空斷路器現場故障的處理方法,希望能為廣大網友提供參考。一、一般性的
真空斷路器的故障  斷路器故障(如斷路器拒合、據分、誤合誤分);儲能機構故障;真空度降低,滅弧能力受損;斷路器滅弧室滅弧能力下降等。二、故障原因分析  1、斷路器拒分、拒合  導致斷路器拒動主要原因有斷路器二次回路故障和機械部分故障兩方面。要根據不同的原因分情況進行解決。當檢測二次回路沒有出現故障的之后,要觀察操動機構主拐臂連接的萬向軸頭間隙的長度,有的時候該間隙過大的時候
任然能使得操動機器正常運轉,但是在這樣的情況先容易使得斷路器分合閘聯桿無法被帶動起來,終造成斷路器無法有規律的分合閘,所以要將該間隙維持在一定的范圍之內。  2、斷路器誤分  斷路器在一般的運轉情況之下,在還沒進行外施操作電源及機械分閘的時候,不要急于將斷路器分閘。要保證各項操作進行準確無誤之后,認真的檢測二次回路及動作機構。要是操動機構出現短路,此時分閘電源就會通過分閘線圈與短
路點形成回路,造成真空斷路器誤分合閘。導致接線短路主要的主要因素就是斷路器機構箱頂部漏雨,雨水和輸出拐臂連接成一條線恰好接觸到機構輔助的開關。  3、斷路器機構儲能后,儲能電機不停  操動機構儲能電機只有在斷路器在合閘后才能進行運轉,簧能量積聚滿格之后就會發出簧已儲能指示。當簧能量滿足之后,行程開關處于閉合狀態,儲能回路接通,電機帶電并保持運轉。  4、斷路器直流電阻增大
  由于真空滅弧室的觸頭為對接式,所以在觸頭接觸電阻超出了實際的承載量范圍的話就會導致載流時觸頭的溫度上升,這樣通常會造成導電和開斷電路情況的出現,因此接觸電阻值務必不能大于出說明書規定的大值。觸頭簧的壓力的大小直接影響到接觸電阻的大小。所以說有在測量之前要仔細的檢查超行程是不是滿足要求。接觸電阻值的要是出現持續升高的情況也是在一定程度上反應著出觸頭電磨損度,它們之間的關系是相互影響的。

可觀察部位的連接螺栓有無松動、軸銷有無脫落或變形。6.接地是否良好。7.引線接觸部位或有出了一種基于強迫換流原理的混合型中壓直流真空斷路器方案。闡述了關鍵部件如斥力真空觸頭機構增強通流能力和提高初始速度的方法,脈沖功率組件串聯應用和提高浪涌通流技術,避雷器的技術要求及參數設計的原則,介紹了已開展的工作。對換流過程進行了理論分析,研制銷售和服務為一體的規模型企業,公司技術力量雄厚,設備配套完善,產品型號多樣,隨著公司的不斷發展,產品設計科學、制作精良、造型美觀,是現代電網建設的理想的配套產品,其中戶內(外)真空斷路器,隔離開關,負荷開關,氧化鋅避雷器,熔斷器,穿墻套管,絕緣子,電流互感器,高壓電力計量箱等一系列高低壓電氣產品暢銷全國各地我們以“科技興業,質量創牌,誠經營,優良服務”的企業宗旨;一直致力于追求卓越的民族電氣工業,為廣大新老用戶提供優質的產品和良好的服務而不懈努力,您的滿意始終是我們追求的目標,真誠歡迎新老朋友惠顧,共創美好未來。了額定5kV/6kA斷路器樣機,進行了系列實驗,驗證了理論分析和參數選擇的有效性。引言隨著艦船綜合電力系統的提出,電力推進方式和高能的出現,艦船電力系統發生革命性的變化,其地位從輔助系統變成主動力系統,容量急劇增大。直流區域配電以其、靈活的優點成為系統網絡的 ,艦船電力邁向中壓直流系統。艦船直流母線額定電壓可達5kV,額定電流可達6kA,故障時 短路電流上升率將達到20A/μs以上,預期短路電流峰值時間2~5ms,峰值電流高達110kA。現有的艦船直流保護設備均為低壓電器,不適用于中壓系統,無法為艦船的中壓直流電力系統提供有效保護,中壓直流斷路器的缺乏成為制約艦船直流電力系統進入工程應用的一個主要因素。基于強迫換流原理的混合型直流真空斷路器(HDCVB)是直流中高壓開斷的有效方式。全俄電力技術研究所研制了額定3.3kV/3000A直流真空限流斷路器,并進行了180A小電流、 1.9kA近額定電流和10kA短路電流3種不同工況下的開斷實驗。西安交通大學研制的人工過零真空斷路器進行了4.1kA和29kA的分斷實驗,但停留在實驗室階段。上述成果難于滿足艦船中壓直流電力系統的參數要求。海程大學提出了一種基于強迫過零原理的改進拓撲結構,并在低壓參數下對斷路器的設計、小開距下介質恢復特性進行了實驗研究,為研究混合型中壓直流真空斷路器奠定了基礎。筆者首先介紹基于強迫換流原理的混合型中壓直流真空斷路器方案,并對其關鍵部件斥力真空觸頭機構、脈沖功率組件及避雷器和換流過程進行了分析設計, 給出了典型分斷實驗。

混合型直流真空斷路器工作原理混合型直流真空斷路器典型結構見圖1,它由斥力真空觸頭機構(VI)、換流電路(C-F-L-D)和避雷器(MOA)并聯組成。混合型中壓直流真空斷路器的研究圖1HDCVB結構示意圖正常情況下,斥力真空觸頭機構處于合閘狀態,換流晶閘管組件處于關斷狀態,換流電容預充電。當傳感器檢測到故障電流或控制器接到分閘指令后,立即觸發斥力機構驅動觸頭分離(t1),真空滅弧室觸頭分離形成真空電弧,觸頭間產生弧壓。當觸頭間隙形成足夠的開距或延遲一定的時間后(t2),控制器向晶閘管組件F發出導通號,主回路電流i開始向換流支路轉移,換流電容C的放電電流iC一部分可能會從二極管D上流過,VI支路電流iVI將逐漸減小直至過零熄弧(t3)。換流電流大于主回路電流部分將流過二極管支路(t3~t4)。當iD過零D截止后,主回路電流全部轉移到C-F-L支路上(t4),一體的規模型企業,公司技術力量雄厚,設備配套完善,產品型號多樣,隨著公司的不斷發展,產品設計科學、制作精良、造型美觀,是現代電網建設的理想的配套產品,其中戶內(外)真空斷路器,隔離開關,負荷開關,氧化鋅避雷器,熔斷器,穿墻套管,絕緣子,電流互感器,高壓電力計量箱等一系列高低壓電氣產品暢銷全國各地我們以“科技興業,質量創牌,誠經營,優良服務”的企業宗旨;一直致力于追求卓越的民族電氣工業,為廣大新老用戶提供優質的產品和良好的服務而不懈努力,您的滿意始終是我們追求的目標,真誠歡迎新老朋友惠顧,共創美好未來。同時,斷路器兩端出現正向過電壓。當換流電容反充電壓大于MOA動作電壓后(t5),電流向MOA支路轉移,MOA開始限壓吸能。隨著F電流減小到零后截止關斷,短路電流全部轉移到MOA上(t6),系統感抗中存儲的能量被MOA吸收耗散(t6~t7),終電流減小到零被切斷,分斷過程結束(t7),見圖2。混合型中壓直流真空斷路器的研究圖2HDCVB分斷過程示意圖斥力真空觸頭機構VI上并聯二極管組件D使分斷過程中恢復過電壓出現的時刻后移,為觸頭電流過零后動靜觸頭間介質恢復創造了近似零電壓的恢復過程,增強了觸頭間隙后續承受恢復電壓的能力,提高了分斷可靠性。在電感L兩端并聯續流二極管的目的是為了減小晶閘管組件通過浪涌電流后截止時的du/dt和降低電容反充電壓幅值。基于強迫換流原理的HDCVB通流能力強,分斷電流高,且分斷時間短,限流效果和工程適用性好。5、結語混合型中壓直流真空斷路器方案,原理簡單、分斷速度快、可靠性高,可以實現大容量中壓直流分斷,基于斥力原理的真空觸頭機構可以實現額定電流通流和快速動作的功能;中壓脈沖功率組件均壓措施改善了串聯應用的分壓特性,采用擴大門極和強觸發可有效提高浪涌通流能力,光控觸發的方案實現了電氣隔離,節約了觸發電源;避雷器的能量等效性原則和參數設計方法等為中壓直流短路器的研制打下了堅實的基礎。

對采集數據進行形態學操作,得到內部高能等離子體及電弧外部輪廓的時間-
面積變化曲線。從引弧、穩定燃弧、熄弧及弧后介質恢復四個角度,對不同階段的電弧面積變化做出定量分析,并探究電弧熄弧階段電弧內外面積差變化。實驗表明,通過分析不同階段的等離子體形態變化,能夠找到電弧平穩燃弧及弧后介質恢復的關鍵點,為高壓等級真空斷路器研發設計及后期電弧形態診斷提供進一步參考。  隨著我國電力系統的不斷發展,真空斷路器的生產數量逐漸超過中壓SF6開關。由于其體積小、開斷壽命長和電
流容量大等優點,真空斷路器的應用范圍越來越多向高壓、超高壓擴展。真空電弧是斷路器觸頭斷開時,依靠蒸發金屬蒸氣并電離來維持的低溫等離子體,其形成、發展和后熄滅對開斷電路有著重要影響。研究真空電弧等離子體的形態特征,對斷路器電場、磁場設計有很好的指導作用。 通過對高速攝像機采集到一組真空電弧分析,t= 0.2~6.8 ms 為引弧和穩定燃弧階段,此階段電弧形態主要為陰極斑點形成和電弧等離子體充滿真個觸頭間隙,因此時兩極不斷向間隙補充電子及高能粒子,故此時雖電弧整體輪廓不斷增大,但擴散現象并不明顯。為更加清晰地展示內外電弧幾何形態區別,本文主要對熄滅階段及弧后介質恢復階段的電弧形態做出
后期處理,對穩定燃弧階段的內部高能等離子體形態未做出細節分析。t=6.9ms 開始為真空熄弧階段,內外面積差開始激增,內部高能等離子體面積逐漸減小,電弧外部輪廓在縱向磁場作用下維持擴散狀態,其電弧原始圖像與內部高能等離子體分布二值圖像如圖6。圖中可看出內部高能電弧即將從兩極分斷開來,外部電弧輪廓基本維持在穩定擴散狀態。  t = 7.5 ms 以后熄弧階段開始向弧后介質恢復階段過渡,內部等
離子面積分布迅速減小,外部電弧輪廓也出現縮小現象,

點擊查看樊高電氣銷售部有限公司的【產品相冊庫】以及我們的【產品視頻庫】